• Title/Summary/Keyword: specific heat

Search Result 1,570, Processing Time 0.037 seconds

Characterization of Trigeminal Ganglion Neurons Expressing Transient Receptor Potential Ankyrin 1 (TRPA1) in the Rat (흰쥐의 삼차신경절에서 Transient receptor potential ankyrin 1 (TRPA1)의 발현 특성에 관한 연구)

  • Paik, Sang-Kyoo;Na, Yeon-Kyung;Kim, Yun-Sook
    • Applied Microscopy
    • /
    • v.42 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • Transient receptor potential ankyrin 1 (TRPA1), responding to noxious cold (${\leq}17^{\circ}C$) and pungent compounds, is implicated in nociception, but little is known about the coexpression of TRPA1 and other channels or receptors involved in the nociception in craniofacial regions. To address this issue, we characterized the TRPA1-immunopositive (+) neurons in the rat trigeminal ganglion (TG) and investigated their colocalization with other proteins known to be expressed in nociceptive neurons, such as transient receptor potential vanilloid (TRPV1) and $P2X_3$ receptor, using light microscopic immunofluorescence labeling method with TRPA1 and TRPV1 or $P2X_3$ antisera. The majority of TRPA1+ neurons costained for TRPV1 (TRPV1+/TRPA1+; 58.8%, 328/558) and 41.2% only expressed TRPA1 but not TRPV1. The TRPV1+/TRPA1+ neurons were small and medium sized. In addition, we investigated the colocalization of TRPA1 with $P2X_3$, a nonselective cation channel activated by ATP that may be released in the extracellular space as a result of tissue damage and inflammation. Among all TRPA1+ TG neurons, 26.1% (310/1186) costained for $P2X_3$, whereas 73.9% (876/1186) of TRPA1+ neurons did not coexpress $P2X_3$. $P2X_3$+/TRPA1+ neurons were predominantly small and medium sized. These results suggest that TRPA1+ neurons coexpressing TRPV1 or $P2X_3$ are involved in specific roles in the transmission and processing of orofacial nociceptive information by noxious cold, heat, and inflammation.

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.

Enzymatic Characteristics of Water-Insoluble ${\alpha}-Amylase$ Immobilized on Dithiocarbamate Wool (Dithiocarbamate Wool에 고정(固定)된 불용성(不溶性) ${\alpha}-Amylase$의 특성(特性)에 대하여)

  • Lee, Kyung-Hee;Kim, Jong-Deog;Lee, Kang-Ho
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.2
    • /
    • pp.164-170
    • /
    • 1985
  • Yellowish modified wool, dithiocarbamate(DTC) wool, was synthesized by partial hydrolysis in 0.2 N-NaOH reacting with carbon disulfide to use as ${\alpha}-amylase$ immobilization matrix. ${\alpha}-amylase$ was immobilized reacting with sulfide group of DTC-wool by covalent binding within 1 hour. 0.5 gram of this preparation, $DTC-wool-{\alpha}-amylase$, contained 150 ug of enzyme protein and its specific activity was about 90% of the native one. General properties of $DTC-wool-{\alpha}-amylase$ were a little different from optimum temperature, optimum pH, heat stability, kinetic constants and activation energy. An apparent Michaelis constant and maximum velocity of $DTC-wool-{\alpha}-amylase$ were 5.56 mg/ml and 0.37 mg/ml. $min^{-1}$ respectively, while activation energy was 16.6 kcal/mole.

  • PDF

A Numerical and Experimental Study for Fry-drying of Various Sludge (슬러지 유중 건조에 대한 전산 해석 및 실험적 연구)

  • Shin, Mi-Soo;Kim, Hey-Suk;Kim, Byeong-Gap;Hwang, Min-Jeong;Jang, Dong-Soon;Ohm, Tae-In
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.341-348
    • /
    • 2010
  • The basic principle of fry drying process of sludge lies in the rapid pressure change of sludge material caused by the change of temperature between oil and moisture due to the difference of specific heat. Therefore, the rapid increase of pressure in drying sludge induces the efficient moisture escape through sludge pores toward heating oil media. The object of this study is to carry out a systematic investigation of the influence of various parameters associated with the sludge fry drying processes on the drying efficiency. To this end, a series of parametric experimental investigation has been made together with the numerical calculation in order to obtain typical drying curves as function of important parameters such as drying temperature, sludge diameter, oil type and sludge type. In the aspect of frying temperature, especially it is found that the operation higher than $140^{\circ}C$ was favorable in drying efficiency regardless of type of waste oil employed in this study. The same result was also noted consistently in the investigation of numerical calculation, that is, in that the sludge particle drying was efficiently made over $140^{\circ}C$ irrespective of the change of particle diameter. As expected, in general, the decrease of diameter in sludge was found efficient both experiment and numerical calculation in drying due to the increased surface area per unit volume. In the investigation of oil type and property, the effect of the viscosity of waste oil was found to be more influential in drying performance. In particular, when the oil with high viscosity, a visible time delay was noticed in moisture evaporation especially in the early stage of drying. However, the effect of high viscosity decreased significantly over the temperature of $140^{\circ}C$. There was no visible difference observed in the study of sludge type but the sewage sludge with a slightly better efficiency. The numerical study is considered to be a quite useful tool to assist in experiment with more detailed empirical modeling as further work.

Innovation Technology Development & Commercialization Promotion of R&D Performance to Domestic Renewable Energy (신재생에너지 기술혁신 개발과 R&D성과 사업화 촉진 방안)

  • Lee, Yong-Seok;Rho, Do-Hwan
    • Journal of Korea Technology Innovation Society
    • /
    • v.12 no.4
    • /
    • pp.788-818
    • /
    • 2009
  • Renewable energy refers to solar energy, biomass energy, hydrogen energy, wind power, fuel cell, coal liquefaction and vaporization, marine energy, waste energy, and liquidity fuel made out of byproduct of geothermal heat, hydrogen and coal; it excludes energy based on coal, oil, nuclear energy and natural gas. Developed countries have recognized the importance of these energies and thus have set the mid to long term plans to develop and commercialize the technology and supported them with drastic political and financial measures. Considering the growing recognition to the field, it is necessary to analysis up-to-now achievement of the government's related projects, in the standards of type of renewable energy, management of sectional goals, and its commercialization. Korean government is chiefly following suit the USA and British policies of developing and distributing renewable energy. However, unlike Japan which is in the lead role in solar rays industry, it still lacks in state-directed support, participation of enterprises and social recognition. The research regarding renewable energy has mainly examinedthe state of supply of each technology and suitability of specific region for applying the technology. The evaluation shows that the research has been focused on supply and demand of renewable as well as general energy and solution for the enhancement of supply capacity in certain area. However, in-depth study for commercialization and the increase of capacity in industry followed by development of the technology is still inadequate. 'Cost-benefit model for each energy source' is used in analysis of technology development of renewable energy and quantitative and macro economical effects of its commercialization in order to foresee following expand in related industries and increase in added value. First, Investment on the renewable energy technology development is in direct proportion both to the product and growth, but product shows slightly higher index under the same amount of R&D investment than growth. It indicates that advance in technology greatly influences the final product, the energy growth. Moreover, while R&D investment on renewable energy product as well as the government funds included in the investment have proportionate influence on the renewable energy growth, private investment in the total amount invested has reciprocal influence. This statistic shows that research and development is mainly driven by government funds rather than private investment. Finally, while R&D investment on renewable energy growth affects proportionately, government funds and private investment shows no direct relations, which indicates that the effects of research and development on renewable energy do not affect government funds or private investment. All of the results signify that although it is important to have government policy in technology development and commercialization, private investment and active participation of enterprises are the key to the success in the industry.

  • PDF

Development of Greenhouse Cooling and Heating Load Calculation Program Based on Mobile (모바일 기반 온실 냉난방 부하 산정 프로그램 개발)

  • Moon, Jong Pil;Bang, Ji Woong;Hwang, Jeongsu;Jang, Jae Kyung;Yun, Sung Wook
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.419-428
    • /
    • 2021
  • In order to develope a mobile-based greenhouse energy calculation program, firstly, the overall thermal transmittance of 10 types of major covers and 16 types of insulation materials were measured. In addition, to estimate the overall thermal transmittance when the cover and insulation materials were installed in double or triple layers, 24 combinations of double installations and 59 combinations of triple installations were measured using the hotbox. Also, the overall thermal transmittance value for a single material and the thermal resistance value were used to calculate the overall thermal transmittance value at the time of multi-layer installation of covering and insulating materials, and the linear regression equation was derived to correct the error with the measured values. As a result of developing the model for estimating thermal transmittance when installing multiple layers of coverings and insulating materials based on the value of overall thermal transmittance of a single-material, the model evaluation index was 0.90 (good when it is 0.5 or more), indicating that the estimated value was very close to the actual value. In addition, as a result of the on-site test, it was evaluated that the estimated heat saving rate was smaller than the actual value with a relative error of 2%. Based on these results, a mobile-based greenhouse energy calculation program was developed that was implemented as an HTML5 standard web-based mobile web application and was designed to work with various mobile device and PC browsers with N-Screen support. It had functions to provides the overall thermal transmittance(heating load coefficient) for each combination of greenhouse coverings and thermal insulation materials and to evaluate the energy consumption during a specific period of the target greenhouse. It was estimated that an energy-saving greenhouse design would be possible with the optimal selection of coverings and insulation materials according to the region and shape of the greenhouse.

Assessing Middle School Students' Understanding of Radiative Equilibrium, the Greenhouse Effect, and Global Warming Through Their Interpretation of Heat Balance Data (열수지 자료 해석에서 드러난 중학생의 복사 평형, 온실 효과, 지구 온난화에 대한 이해)

  • Chung, Sueim;Yu, Eun-Jeong
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.770-788
    • /
    • 2021
  • This study aimed to determine whether middle school students could understand global warming and the greenhouse effect, and explain them in terms of global radiative equilibrium. From July 13 to July 24 in 2021, 118 students in the third grade of middle school, who completed a class module on 'atmosphere and weather', participated in an online assessment consisting of multiple-choice and written answers on radiative equilibrium, the greenhouse effect, and global warming; 97 complete responses were obtained. After analysis, it was found that over half the students (61.9%) correctly described the meaning of radiative equilibrium; however, their explanations frequently contained prior knowledge or specific examples outside of the presented data. The majority of the students (92.8%) knew that the greenhouse effect occurs within Earth's atmosphere, but many (32.0%) thought of the greenhouse effect as a state in which the radiative equilibrium is broken. Less than half the students (47.4%) answered correctly that radiative equilibrium occurs on both Earth and the Moon. Most of the students (69.1%) understood that atmospheric re-radiation is the cause of the greenhouse effect, but few (39.2%) answered correctly that the amount of surface radiation emitted is greater than the amount of solar radiation absorbed by the Earth's surface. In addition, about half the students (49.5%) had a good understanding of the relationship between the increase in greenhouse gases and the absorption of atmospheric gases, and the resulting reradiation to the surface. However, when asked about greenhouse gases increases, their thoughts on surface emissions were very diverse; 14.4% said they increased, 9.3% said there was no change, 7.2% said they decreased, and 18.6% gave no response. Radiation equilibrium, the greenhouse effect, and global warming are a large semantic network connected by the balance and interaction of the Earth system. This can thus serve as a conceptual system for students to understand, apply, and interpret climate change caused by global warming. Therefore, with the current climate change crisis facing mankind, sophisticated program development and classroom experiences should be provided to encourage students to think scientifically and establish scientific concepts based on accurate understanding, with follow-up studies conducted to observe the effects.

A Study on the Resource Recovery of Fe-Clinker generated in the Recycling Process of Electric Arc Furnace Dust (전기로 제강분진의 재활용과정에서 발생되는 Fe-Clinker의 자원화에 관한 연구)

  • Jae-hong Yoon;Chi-hyun Yoon;Hirofumi Sugimoto;Akio Honjo
    • Resources Recycling
    • /
    • v.32 no.1
    • /
    • pp.50-59
    • /
    • 2023
  • The amount of dust generated during the dissolution of scrap in an electric arc furnace is approximately 1.5% of the scrap metal input, and it is primarily collected in a bag filter. Electric arc furnace dust primarily consists of zinc and ion. The processing of zinc starts with its conversion into pellet form by the addition of a carbon-based reducing agent(coke, anthracite) and limestone (C/S control). These pellets then undergo reduction, volatilization, and re-oxidation in rotary kiln or RHF reactor to recover crude zinc oxide (60%w/w). Next, iron is discharged from the electric arc furnace dust as a solid called Fe clinker (secondary by-product of the Fe-base). Several methods are then used to treat the Fe clinker, which vary depending on the country, including landfilling and recycling (e.g., subbase course material, aggregate for concrete, Fe-source for cement manufacturing). However, landfilling has several drawbacks, including environmental pollution due to leaching, high landfill costs, and wastage of iron resources. To improve Fe recovery in the clinker, we pulverized it into optimal -sized particles and employed specific gravity and magnetic force selection methods to isolate this metal. A carbon-based reducing agent and a binding material were added to the separated coarse powder (>10㎛) to prepare briquette clinker. A small amount (1-3%w/w) of the briquette clinker was charged with the scrap in an electric arc furnace to evaluate its feasibility as an additives (carbonaceous material, heat-generating material, and Fe source).

Distribution of Agalmatolite Mines in South Korea and Their Utilization (한국의 납석 광산 분포 현황 및 활용 방안)

  • Seong-Seung Kang;Taeyoo Na;Jeongdu Noh
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.543-553
    • /
    • 2023
  • The current status of domestic a agalmatolite mines in South Korea was investigated with a view to establishing a stable supply of agalmatolite and managing its demand. Most mined agalmatolite deposits were formed through hydrothermal alteration of Mesozoic volcanic rocks. The physical characteristics of pyrophyllite, the main constituent mineral of agalmatolite, are as follows: specific gravity 2.65~2.90, hardness 1~2, density 1.60~1.80 g/cm3, refractoriness ≥29, and color white, gray, grayish white, grayish green, yellow, or yellowish green. Among the chemical components of domestic agalmatolite, SiO2 and Al2O3 contents are respectively 58.2~67.2 and 23.1~28.8 wt.% for pyrophyllite, 49.2~72.6 and 16.5~31.0 wt.% for pyrophyllite + dickite, 45.1 and 23.3 wt.% for pyrophyllite + illite, 43.1~82.3 and 11.4~35.8 wt.% for illite, and 37.6~69.0 and 19.6~35.3 wt.% for dickite. Domestic agalmatolite mines are concentrated mainly in the southwest and southeast of the Korean Peninsula, with some occurring in the northeast. Twenty-one mines currently produce agalmatolite in South Korea, with reserves in the order of Jeonnam (45.6%) > Chungbuk (30.8%) > Gyeongnam (13.0%) > Gangwon (4.8%), and Gyeongbuk (4.8%). The top 10 agalmatolite-producing mines are in the order of the Central Resources Mine (37.9%) > Wando Mine (25.6%) > Naju Ceramic Mine (13.4%) > Cheongseok-Sajiwon Mine (5.4%) > Gyeongju Mine (5.0%) > Baekam Mine (5.0%) > Minkyung-Nohwado Mine (3.3%) > Bugok Mine (2.3%) > Jinhae Pylphin Mine (2.2%) > Bohae Mine. Agalmatolite has low thermal conductivity, thermal expansion, thermal deformation, and expansion coefficients, low bulk density, high heat and corrosion resistance, and high sterilization and insecticidal efficiency. Accordingly, it is used in fields such as refractory, ceramic, cement additive, sterilization, and insecticide manufacturing and in filling materials. Its scope of use is expanding to high-tech industries, such as water treatment ceramic membranes, diesel exhaust gas-reduction ceramic filters, glass fibers, and LCD panels.

Absorption Characteristics of Water-Lean Solvent Composed of 3-(Methylamino)propylamine and N-Methyl-2-Pyrrolidone for CO2 Capture (3-메틸아미노프로필아민과 N-메틸-2-피롤리돈을 포함한 저수계 흡수제의 CO2 포집 특성)

  • Shuai Wang;Jeong Hyeon Hong;Jong Kyun You;Yeon Ki Hong
    • Korean Chemical Engineering Research
    • /
    • v.61 no.4
    • /
    • pp.555-560
    • /
    • 2023
  • Conventional aqueous amine-based CO2 capture has a problem in that a large amount of renewable energy is required for CO2 stripping and solvent regeneration in its industrial applications. This work proposes a water-lean absorbent that can reduce regeneration energy by lowering the water content in the absorbent with high absorption capacity for CO2. To this purpose, this water-lean solvent introduced NMP (N-methyl-2-pyrrolidone), which has a higher physical solubility in CO2 and a low specific heat capacity comparing to water, along with 3-methylaminopropylamine (MAPA), a diamine, into the absorbent. The circulating absorption capacity and absorption rate for CO2 of this water-lean solvent were measured using a packed tower. When NMP was added to the absorbent, the absorption rate was improved. In the case of the absorbent containing 2.5M MAPA was used, the maximum circulating absorption capacity was obtained when 10 wt% of NMP was included in absorbent. The overall mass transfer coefficient increased as the concentration of NMP increased. However, at loading values higher than 0.5, the increment in mass transfer coefficient decreased as the concentration of NMP increased. When the lean loading value is low, the mass transfer resistance due to viscosity of the absorbent is low, so the overall mass transfer coefficient increases with the addition of NMP. However, as the lean loading value increases, the viscosity of the absorbent increases, and the diffusivity of CO2 and MAPA decreases, resulting in sharply decreasing of the overall mass transfer coefficient.