DOI QR코드

DOI QR Code

Absorption Characteristics of Water-Lean Solvent Composed of 3-(Methylamino)propylamine and N-Methyl-2-Pyrrolidone for CO2 Capture

3-메틸아미노프로필아민과 N-메틸-2-피롤리돈을 포함한 저수계 흡수제의 CO2 포집 특성

  • Shuai Wang (Department of IT.Energy Convergence, Korea National University of Transportation) ;
  • Jeong Hyeon Hong (Department of Chemical and Biological Engineering, Korea National University of Transportation) ;
  • Jong Kyun You (CCS Research Department, Korea Institute of Energy Research) ;
  • Yeon Ki Hong (Department of IT.Energy Convergence, Korea National University of Transportation)
  • 왕슈아이 (한국교통대학교 교통.에너지융합학과) ;
  • 홍정현 (한국교통대학교 화공생물공학과) ;
  • 유정균 (한국에너지기술연구원 CCS연구단) ;
  • 홍연기 (한국교통대학교 교통.에너지융합학과)
  • Received : 2023.09.07
  • Accepted : 2023.10.13
  • Published : 2023.11.01

Abstract

Conventional aqueous amine-based CO2 capture has a problem in that a large amount of renewable energy is required for CO2 stripping and solvent regeneration in its industrial applications. This work proposes a water-lean absorbent that can reduce regeneration energy by lowering the water content in the absorbent with high absorption capacity for CO2. To this purpose, this water-lean solvent introduced NMP (N-methyl-2-pyrrolidone), which has a higher physical solubility in CO2 and a low specific heat capacity comparing to water, along with 3-methylaminopropylamine (MAPA), a diamine, into the absorbent. The circulating absorption capacity and absorption rate for CO2 of this water-lean solvent were measured using a packed tower. When NMP was added to the absorbent, the absorption rate was improved. In the case of the absorbent containing 2.5M MAPA was used, the maximum circulating absorption capacity was obtained when 10 wt% of NMP was included in absorbent. The overall mass transfer coefficient increased as the concentration of NMP increased. However, at loading values higher than 0.5, the increment in mass transfer coefficient decreased as the concentration of NMP increased. When the lean loading value is low, the mass transfer resistance due to viscosity of the absorbent is low, so the overall mass transfer coefficient increases with the addition of NMP. However, as the lean loading value increases, the viscosity of the absorbent increases, and the diffusivity of CO2 and MAPA decreases, resulting in sharply decreasing of the overall mass transfer coefficient.

기존 아민 수용액 기반 CO2 포집 공정을 산업적으로 적용할 경우 CO2 탈거 및 용매 재생에 따른 재생 에너지가 크다는 문제점을 갖고 있다. 본 논문은 CO2에 대한 높은 흡수 용량과 함께 흡수제에 포함된 물의 조성을 낮춤으로써 재생 에너지를 저감할 수 있는 저수계 흡수제를 제안하였다. 이를 위해 본 연구에서는 디아민인 MAPA (3-methylaminopropylamine)와 함께 물의 일부를 대신하여 물에 비해 CO2에 대한 물리적 용해도가 높고 비열이 낮은 NMP (N-methyl-2-pyrrolidone)를 흡수제에 도입하였다. 흡수제의 CO2에 대한 흡수 용량(αrich)과 순환 흡수 용량(Δα) 및 흡수 속도는 충전탑을 이용하여 측정하였다. 2.5M의 MAPA를 포함한 흡수제를 사용했을 경우 NMP가 10 wt% 포함된 경우에 최대 순환 흡수 용량을 얻을 수 있었다. 총괄물질전달 계수는 NMP의 농도가 증가함에 따라 증가하였다. 그러나 0.5보다 더 높은 CO2 로딩 값에서는 NMP의 농도 증가에 따른 물질전달 계수의 증가 폭이 줄어들었다. lean 로딩 값이 낮은 경우에는 점성에 의한 물질전달 저항이 낮아서 NMP 첨가에 따라 총괄 물질전달 계수가 증가하나 로딩 값이 증가함에 따라 흡수제의 점도가 증가하면서 CO2와 MAPA의 확산도가 낮아지며 이에 따라 총괄 물질전달계수가 급격히 감소하였다.

Keywords

Acknowledgement

이 논문은 2023년도 산업통산자원부의 재원으로 한국에너지기술평가원(KETEP)의지원을 받아수행된연구임(20212010200090).

References

  1. Ochedi, F. O., Yu, J., Yu, H., Liu, Y. and Hussain, A., "Carbon Dioxide Capture Using Liquid Absorption Methods: A Review," Environ. Chem. Lett., 19, 770109(2021).
  2. Jang, G. G., Thompson, J. A., Sun, X. and Tsouris, C., "Process Intensification of CO2 Capture by Low-aqueous Solvent," Chem. Eng. J., 426, 131240(2021).
  3. Shamiri, A., Shafeeyan, M. S., Tee, H. C., Leo, C. Y., Aroua, M. K. and Aghamohammadi, N., "Absorption of CO2 into Aqueous Mixtures of Glycerol and Monoethanolamine," J. Nat. Gas Sci. Eng., 35, 605-613(2016). https://doi.org/10.1016/j.jngse.2016.08.072
  4. Guo, H., Li, C., Shi, X., Li, H. and Shen, S., "Nonaqueous Amine-Based Absorbents for Energy Efficient CO2 Capture," Appl. Energy, 239 725-734(2019). https://doi.org/10.1016/j.apenergy.2019.02.019
  5. Im, J., Hong, S. Y., Cheon, Y., Lee, J., Lee, J. S., Kim, H. S., Cheong, M. and Park, H., "Steric Hindrance-Induced Zwitterionic Carbonates from Alkanolamines and CO2: Highly Efficient CO2 Absorbents," Energy Environ. Sci., 4(10) 4284-4289(2011). https://doi.org/10.1039/c1ee01801a
  6. Leites, I. L., "Thermodynamics of CO2 Solubility in Mixtures Monoethanolamine with Organic Solvents and Water and Commercial Experience of Energy Saving Gas Purification Technology," Energy Convers. Manag., 39, 1665-1674(1998). https://doi.org/10.1016/S0196-8904(98)00076-4
  7. Lail, M., Tanthana, J. and Coleman, L., "Non-Aqueous Solvent (NAS) CO2 Capture Process," Energy Procedia, 63, 580-594(2014). https://doi.org/10.1016/j.egypro.2014.11.063
  8. RTI International, Large bench-scale development of a Non-Aqueous Solvent (NAS) CO2 Capture Process for Coal-Fired Power Plants Utilizing Real Coal-Derived Flue Gas, Final Scientific/Technical Report, Nov. 2019.
  9. Mathias, P. M., Zheng, F., Heldebrant, D. J., Zwoster, A., Whyatt, G., Freeman, C. M., Bearden, M. D. and Koech, P., "Measuring the Absorption Rate of CO2 in Nonaqueous CO2-Binding Organic Liquid Solvents with a Wetted-Wall Apparatus," ChemSusChem, 21(9) 3617-3625(2015). https://doi.org/10.1002/cssc.201500288
  10. Zheng, F., Heldebrant, D. J., Mathias, P. M., Koech, P., Bhakta, M., Freemam, C. J., Bearden, M. D. and Zwoster, A., "Bench-Scale Testing and Process Performance Projections of CO2 Capture by CO2-Binding Organic Liquids (CO2BOLs) with and without Polarity-Swing-Assisted Regeneration," Energy & Fuels, 30, 1192-1203(2016)
  11. Pinto, D. D. D., Johnsen, B., Awais, M., Svendsen, H. F. and Knuutila, H. K., "Viscosity Measurements and Modeling of Loaded and Unloaded Aqueous Solutions of MDEA, DMEA, DEEA and MAPA," Chem. Eng. Sci., 171, 340-350(2017). https://doi.org/10.1016/j.ces.2017.05.044
  12. Yuan, Y. and Rochelle, G. T., "CO2 Absorption Rate and Capacity of Semi-Aqueous Piperazine for CO2 Capture," Int. J. Greenh. Gas Control, 85, 182-186(2019). https://doi.org/10.1016/j.ijggc.2019.03.007
  13. Zhang, W., Jin, X., Tu, W., Ma, Q., Mao, M. and Cui, C., "Development of MEA-based CO2 Phase Change Absorbent," Appl. Energy., 195, 316-323(2017). https://doi.org/10.1016/j.apenergy.2017.03.050
  14. Yuan, Y. and Rochelle, G. T., "CO2 Absorption Rate in Semi-Aqueous Monoethanolamine," Chem. Eng. Sci., 182, 56-66(2018). https://doi.org/10.1016/j.ces.2018.02.026
  15. Lee, H. Y., Seok, C. H., You, J.-K. and Hong, Y. K., "Absorption Characteristics of Carbon Dioxide by Water-lean Diethylenetriamine Absorbents Mixed with Physical Solvents," Clean Technol., 24(1), 50-54(2018).
  16. Choi, Y. M., Hong, Y. K. and You, J.-K, "Carbon Dioxide Absorption in a Packed Column Using Guanidine-based Superbase Solution," Korean Chem. Eng. Res., 54(5), 1-5(2016). https://doi.org/10.9713/kcer.2016.54.1.1