• 제목/요약/키워드: specific heat

검색결과 1,566건 처리시간 0.03초

초전도 결정의 저온 비열 점프의 자기장 의존성 (Magnetic Field Dependence of Low Temperature Specific Heat Jump in Superconducting Crystal)

  • 김철호
    • 한국재료학회지
    • /
    • 제21권2호
    • /
    • pp.73-77
    • /
    • 2011
  • Specific heat of a crystal is the sum of electronic specific heat, which is the specific heat of conduction electrons, and lattice specific heat, which is the specific heat of the lattice. Since properties such as crystal structure and Debye temperature do not change even in the superconducting state, the lattice specific heat may remain unchanged between the normal and the superconducting state. The difference of specific heat between the normal and superconducting state may be caused only by the electronic specific heat difference between the normal and superconducting states. Critical temperature, at which transition occurs, becomes lower than $T_{c0}$ under the influence of a magnetic field. It is well known that specific heat also changes abruptly at this critical temperature, but magnetic field dependence of jump of specific heat has not yet been developed theoretically. In this paper, specific heat jump of superconducting crystals at low temperature is derived as an explicit function of applied magnetic field H by using the thermodynamic relations of A. C. Rose-Innes and E. H. Rhoderick. The derived specific heat jump is compared with experimental data for superconducting crystals of $MgCNi_3$, $LiTi_2O_4$ and $Nd_{0.5}Ca_{0.5}MnO_3$. Our specific heat jump function well explains the jump up or down phenomena of superconducting crystals.

변화하는 밀도와 비열을 고려한 고속 저어널 베어링의 열유체 윤활해석 (Thermohydrodynamic Lubrication Analysis of High Speed Journal Bearing Considering Variable Density and Specific Heat)

  • 전상명;장시열
    • Tribology and Lubricants
    • /
    • 제17권4호
    • /
    • pp.297-306
    • /
    • 2001
  • Under the condition of variable density and specific heat, maximum pressure, maximum temperature, bearing load, friction and side leakage in high-speed journal bearing operation are examined within some degree of Journal misalignment. The results are compared with the calculation results under the conditions of constant density and specific heat, and variable density and constant specific heat. It is found that the condition of variable density and specific heat play important roles in determining friction and load of Journal bearing at high speed operation.

산화물핵연료의 비열특성 (Specific Heat Characteristics of Ceramic Fuels)

  • 강권호;박창제;류호진;송기찬;양명승;문흥수;이영우;나상호
    • 에너지공학
    • /
    • 제13권4호
    • /
    • pp.259-266
    • /
    • 2004
  • 세라믹핵연료의 비열기구는 격자 진동 비열, 팽창 비열, 전도전자 및 결함비열 그리고 과잉비열로 구성된다. 비열을 표현하는 모델은 정압비열 항과 팽창비열 항 그리고 결함비열 항으로 구성된다. 본 연구에서는 세라믹 핵연료의 실험자료 또는 발표된 자료들을 종합 분석하였으며, 가장 적합한 모델을 추천하였다. $UO_2$, (U, Pu)혼합핵연료 및 사용후 핵연료의 비열 자료들이 분석되었다. 사용 후 핵연료의 경우 모의 핵연료의 비열로 대신하였다.

변화하는 밀도와 비열을 고려한 고속 저어널 베어링의 열유체 윤활해석 II-축 경사도 영향 (Thermohydrodynamic Lubrication Analysis of High Speed Journal Bearing Considering Variable Density and Specific Heat: Part II - Shaft Misalignment Effect)

  • 전상명;장시열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.305-310
    • /
    • 2001
  • Within some degree of journal misalignment, maximum pressure, maximum temperature, bearing load, friction and side leakage in high-speed journal bearing operation are examined under the condition of variable density and specific heat. The results are compared with the calculation results under the conditions of constant density and specific heat, and variable density and constant specific heat. It is found that the effects of variable density and specific heat on shaft misalignment are significant in determining the load capacity of a journal bearing operating at high speed.

  • PDF

변화하는 밀도와 비열을 고려한 고속 저어널 베어링의 열유체 윤활해석 I-축 속고영향 (Thermohydrodynamic Lubrication Analysis of High Speed Journal Bearing Considering Variable Density and Specific Heat: Part I - Shaft Speed Effect)

  • 전상명;장시열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집C
    • /
    • pp.287-292
    • /
    • 2001
  • Under the condition of variable density and specific heat, maximum pressure, maximum temperature, bearing load, friction and side leakage in high-speed journal bearing operation are examined. The results are compared with the calculation results under the conditions of constant density and specific heat, and variable density and constant specific heat. It is found that the condition of variable density and specific heat play important roles in determining friction and load of journal bearing at high speed operation.

  • PDF

지중열원 열펌프 시스템의 난방성능 해석 (A Study on the Heating Performance of Ground Source Heat Pump System)

  • 우정선;김대기;이세균
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1175-1182
    • /
    • 2004
  • Installations of vertical boreholes for the ground source heat pump system are expensive to install. One way to reduce the initial cost is to increase the specific heat extraction rate of borehole system. However, as the specific heat extraction rate increases the temperature of borehole fluid decreases with the resultant lower Coefficient Of Performance in Heating(COPH) of heat pump system. The purpose of this study is to provide the basic informations about the performance of heat pump system with the specific heat extraction rate and soil thermal properties such as thermal conductivity and temperature. It is shown that the specific heat extraction rate is the most important parameter for the ground source heat pump system. To obtain the reasonable COPH value (COPH > 3) the heat extraction rate should be about 25 W/m or less. Accurate measurements of soil thermal properties are also very important to design the system properly. The effects of borehole thermal resistances are also examined in this study.

CNT/EEA 반도전층 재료와 XLPE 절연체의 열적 특성 (Specific Heat and Thermal Conductivity Measurement of CNT/EEA Semiconducting Materials and XLPE Insulator)

  • 양종석;이경용;신동훈;박대희
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권11호
    • /
    • pp.514-519
    • /
    • 2006
  • To improve the mean-life and the reliability of power cable, we have investigated specific heat (Cp) and thermal conductivity of XLPE insulator and semiconducting materials in 154[kV] underground power transmission cable. Specimens were made of sheet form with the seven of specimens for measurement. Specific heat (Cp) and thermal conductivity were measured by DSC (Differential Scanning Calorimetry) and Nano Flash Diffusivity. Specific-heat measurement temperature ranges of XLPE insulator were from $20[^{\circ}C]\;to\;90[^{\circ}C]$, and the heating rate was $1[^{\circ}C/min]$. And the measurement temperatures of thermal conductivity were $25[^{\circ}C],\;55[^{\circ}C]\;and\;90[^{\circ}C]$. In case of semiconducting materials, the measurement temperature ranges of specific heat were from $20[^{\circ}C]\;to\;60[^{\circ}C]$, and the heating rate was $1[^{\circ}C/min]$. And the measurement temperatures of thermal conductivity were $25[^{\circ}C]\;and\;55[^{\circ}]C$. From these experimental results both specific heat and thermal conductivity were increased by heating rate because volume of materials was expanded according to rise in temperature. We could know that a small amount of CNT has a excellent thermal properties.

저온에서 초전도 결정의 비열 점프 (Specific heat jump of superconducting crystal in low temperature)

  • 김철호
    • 한국결정성장학회지
    • /
    • 제21권1호
    • /
    • pp.1-5
    • /
    • 2011
  • 본 논문에서는 먼저 저온에서의 초전도 결정의 비열 점프를 임계 온도의 함수로 구하였다. 다음에, 구한 비열 점프의 부호와 크기 등을 분석하여 여러 가지 실험적인 사실들을 예측하였다. 마지막으로 우리가 예측한 실험 사실과 실제의 실험이 일치하는지 비교하였다. 이론적으로 구한 비열점프는 $YNi_2B_2C$ 결정의 비열 점프 업 과 비열 점프 다운 현상을 비교적 잘 설명한다. 특히 매우 낮은 온도에서는 상전도-초전도 전이 시에 비열이 점프 다운된다는 주목할 만한 이론적 예측을 실험 결과를 통해 확인할 수 있었다.

STS 304 중공 원통의 비정상 열전달 특성 (Characteristics on the Non-Steady Heal Transfer of the STS 304 Hollow Cylinder)

  • 이상철;김영근;심규진;배강열;정한식;정효민
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1552-1557
    • /
    • 2004
  • This paper introduced about characteristics on the non-steady heat transfer of STS 304 hollow cylinder, In the non-steady state, the specific heat and conductivity are depended on the temperature variations, and these properties affect to the governing equation on heat conduction. But the most of numerical analysis on heat conduction is assumed to constant properties which is conductivity and specific heat. Assuming that conduction is assumed to constant properties which is conductivity and specific heat. Assuming that the properties are reacted sensitively, the numerical results can have the difference of between constant properties with non-constant properties. The main parameters are specific heat and conductivity. The temperature distributions of the STS 304 hollow cylinder became in steady state after 4 minutes in case of the constant properties. As the conductivity in varied with temperature, the temperature distributions became in steady state after 15 minutes. Therefore, a numerical analysis of the non steady state heat transfer will has to apply that conductivity varied with temperature.

  • PDF

개량된 등가비열법을 이용한 상변화 열전달의 수치해석 (Application of the Modified Equivalent Specific Method to the Phase Change Heat Transfer)

  • 목진호
    • 대한기계학회논문집B
    • /
    • 제29권7호
    • /
    • pp.814-819
    • /
    • 2005
  • The phase change heat transfer has been applied to the processes of machines as well as of manufacturing. The cycle in a heat exchanger includes the phase change phenomena of coolant for air conditioning, the solidification in casting process makes use of the characteristics of phase change of metal, and the welding also proceeds with melting and solidification. To predict the phase change processes, the experimental and numerical approaches are available. In the case of numerical analysis, the Enthalpy method is most widely applied to the phase change problem, comparing to the other numerical methods, i.e. the Equivalent Specific Heat method and the Temperature Recovery method. It's because that the Enthalpy method is accurate and straightforward. The Enthalpy method does not include any correction step while the correction of final temperature field is inevitable in the Equivalent Specific Heat method and the Temperature Recovery method. When the temperature field is to be used in the calculation, however, there must be converting process from enthalpy to temperature in the calculation scheme of Enthalpy method. In this study, an improved method for the Equivalent Specific Heat method is introduced whose method dose not include the correction steps and takes temperature as an independent variable so that the converting between enthalpy and temperature does not need any more. The improved method is applied to the solidification process of pure metal to see the differences of conventional and improved methods.