Specific Heat Characteristics of Ceramic Fuels

산화물핵연료의 비열특성

  • 강권호 (한국원자력연구소 건식공정핵연료 기술개발부) ;
  • 박창제 (한국원자력연구소 건식공정핵연료 기술개발부) ;
  • 류호진 (한국원자력연구소 건식공정핵연료 기술개발부) ;
  • 송기찬 (한국원자력연구소 건식공정핵연료 기술개발부) ;
  • 양명승 (한국원자력연구소 건식공정핵연료 기술개발부) ;
  • 문흥수 (한국원자력연구소 건식공정핵연료 기술개발부) ;
  • 이영우 (한국원자력연구소 건식공정핵연료 기술개발부) ;
  • 나상호 (한국원자력연구소 건식공정핵연료 기술개발부)
  • Published : 2004.11.01

Abstract

Specific heat mechanism of oxide fuel is contributed by lattice vibration, dilatation, conduction electron and defect and excess specific heat. Model of oxide fuel for specific heat consists of specific heat at constant pressure term, dilatation specific heat term and defect specific heat term. In this study experimental and published data on the specific heats of oxide nuclear fuels have been reviewed and analyzed to recommend the best fitting model. The oxide fuels considered in this paper were UO$_2$, mixed (U, Pu) oxides and spent fuel. The specific heat data of spent fuel has been replaced by that of simulated fuel.

세라믹핵연료의 비열기구는 격자 진동 비열, 팽창 비열, 전도전자 및 결함비열 그리고 과잉비열로 구성된다. 비열을 표현하는 모델은 정압비열 항과 팽창비열 항 그리고 결함비열 항으로 구성된다. 본 연구에서는 세라믹 핵연료의 실험자료 또는 발표된 자료들을 종합 분석하였으며, 가장 적합한 모델을 추천하였다. $UO_2$, (U, Pu)혼합핵연료 및 사용후 핵연료의 비열 자료들이 분석되었다. 사용 후 핵연료의 경우 모의 핵연료의 비열로 대신하였다.

Keywords

References

  1. Dulong, P.L. and Petit, A.T.: Ann. Chim. Phys., 10, 395 (1819)
  2. Moore, G.E. and Kelley, K.K.: J. Am. Chem. Soc., 69, 2105 (1947) https://doi.org/10.1021/ja01201a009
  3. Conway, J.B. and Hein, R.A.: J. Nucl. Mater., 15, 149 (1965)
  4. Hein, R.A., Flagella, P.N. and Conway, J.B.: J. Am. Ceramic. Soc., 51, 291 (1968) https://doi.org/10.1111/j.1151-2916.1968.tb13863.x
  5. Hein, R.A. and Flagella, P.N., GR report, GEMP578, General Electric Feb. 16 (1968)
  6. Hein, R.A., Sjodahl, L.H. and Szwarc, R, J. Nucl. Mater., 25, 99 (1968) https://doi.org/10.1016/0022-3115(68)90146-3
  7. Ogard, A.E. and Leary, J.A.: Thermodynamics of Nuclear Materials, IAEA, Vienna (1968)
  8. Kruger, O.L. and Savage, H.: J. Chem. Phys., 49, 10, 4540 (1968) https://doi.org/10.1063/1.1669909
  9. Leibowitz, L., Mishler, L.W. and Chasanov, M.G.: J. Nucl. Mater., 29, 356 (1969) https://doi.org/10.1016/0022-3115(69)90215-3
  10. Frederickson, D.R. and Chasanov, M.G.: J. Chem. Thermodynamics, 2, 623 (1970) https://doi.org/10.1016/0021-9614(70)90037-6
  11. Gronvold, F., Kveseth, N.J., Sveen, A. and Tichy, J.: J. Chem. Thermodynamics, 2, 665 (1970) https://doi.org/10.1016/0021-9614(70)90042-X
  12. Kerrisk, J.F. and Clifton, D.G., Nucl. Tech., 16, 531 (1972) https://doi.org/10.13182/NT72-6
  13. Gibby, R.L.: Enthalpy and Heat Capacity of $U_{0.75}Pu_{0.25}O_{2-x}$HEDL-TME-73-19 lanuary (1973)
  14. Gibby, R.L., Leibowitz, L., Kerrisk, J.F. and Clifton, D.G.: J. Nucl. Mater., 50, 155 (1974) https://doi.org/10.1016/0022-3115(74)90152-4
  15. Leibowitz, L., Fischer D.F. and Chasanov, M.G.: ANL8082 (1974)
  16. Macinnes, D.A. and Catlow, C.R.A.: J. Nucl. Mater., 89, 354 (1980) https://doi.org/10.1016/0022-3115(80)90067-7
  17. Macinnes, D.A. and Catlow, C.R.A., SRD, R140, May (1979)
  18. Harding, J.H., Masri, P. and Stoneham, A.M.: J. Nucl. Mater., 92, 73 (1980) https://doi.org/10.1016/0022-3115(80)90143-9
  19. Harding, J.H., Masri, P and Stoneham, A.M.: TP827, March (1980)
  20. Browning, P: J. Nucl. Mater., 98, 345 (1981) https://doi.org/10.1016/0022-3115(81)90161-6
  21. Hyland, G.J. and Stoneham, A.M.: J. Nucl. Mater., 96, 1 (1981) https://doi.org/10.1016/0022-3115(81)90211-7
  22. Oetting, F.L.: J. Nucl. Mater., 105, 257 (1982) https://doi.org/10.1016/0022-3115(82)90382-8
  23. Harding, J.H., Martin, D.G. and Potter, P.E.: EUR, 12402 (1989)
  24. Inaba, H., Naito, K. and Oguma, M.: J. Nucl. Mater., 149, 341 (1987). https://doi.org/10.1016/0022-3115(87)90536-8
  25. Naito, K.: J. Nucl. Mater., 167, 30 (1989) https://doi.org/10.1016/0022-3115(89)90422-4
  26. Matsui, T, Arita, Y. and Naito, K.: Solid State Ionics, 49, 195 (1991) https://doi.org/10.1016/0167-2738(91)90086-Q
  27. Matsui, T, Kawase, T and Naito, K.: J. Nucl. Mater., 186, 254 (1992) https://doi.org/10.1016/0022-3115(92)90344-K
  28. Matsui, T., Arita, Y. and Naito, K., J. Nucl. Mater., 188, 205 (1992) https://doi.org/10.1016/0022-3115(92)90472-W
  29. Takahashi, Y. and Asou, M.: J. Nucl. Mater., 201, 108 (1993) https://doi.org/10.1016/0022-3115(93)90164-T
  30. Lucuta, P.G., Matzke, Hj., Verrall, R.A. and Tasman, H.A.: J. Nucl. Mater., 188, 198 (1992) https://doi.org/10.1016/0022-3115(92)90471-V
  31. Lucuta, P.G., Matzke, Hj. and Verrall, R.A.: J. Nucl. Mater., 223, 51 (1995) https://doi.org/10.1016/0022-3115(94)00703-9
  32. Verral, R.A. and Lucuta, P.G.: J. Nucl. Mater., 228, 251 (1996) https://doi.org/10.1016/S0022-3115(95)00238-3
  33. Matzke, Hj., Verrall, R.A. and Lucuta, P.G.: J. Henderson, J. Nucl. Mater., 247, 121 (1997) https://doi.org/10.1016/S0022-3115(97)00069-X
  34. Morita, K., Fischer, E.A. and Thurnay, K.: Nuclear Engineering and Design, 183, 193 (1998) https://doi.org/10.1016/S0029-5493(98)00176-9
  35. Ronchi, C. and Hyland, G.J.: J. Alloys and Compounds, 213/214, 159 (1994)
  36. Ronchi, C., Sheindlin, M., Musella, M. and Hyland, G.J.: J. App. Phys., 85, 2, 776 (1999) https://doi.org/10.1063/1.369159
  37. Fink, J.K., Chasanov, M.G. and Leibowitz, L.: J. Nucl. Mater., 102, 17 (1981) https://doi.org/10.1016/0022-3115(81)90541-9
  38. Fink, J.K.: J. Nucl. Mater., 279, 1 (2000) https://doi.org/10.1016/S0022-3115(99)00273-1
  39. Fink, J.K. and Petri, M.C.: ANL, RE-97/2, February (1997)
  40. Carbajo, J.J., Yoder, G.L., Popov, S.G. and Ivanov, Y.K.: J. Nucl. Mater., 299, 181 (2001) https://doi.org/10.1016/S0022-3115(01)00692-4
  41. Popov, S.G., Carbajo, J.J., Ivanov, Y.K. and Yoder, G.K.: ORNLITM-2000/351 (2000)
  42. Amaya, M., Une, K. and Minato, K.: J. Nucl. Mater., 294, 1 (2001) https://doi.org/10.1016/S0022-3115(01)00450-0
  43. Kurepin, V.A.: J. Nucl. Mater., 303, 65 (2002) https://doi.org/10.1016/S0022-3115(02)00790-0
  44. Maier, C.G. and Kelley, K.K.: J. Am. Chem. Soc., 54, 3243 (1932) https://doi.org/10.1021/ja01347a029