• 제목/요약/키워드: specific flexural

검색결과 115건 처리시간 0.024초

복합평판구조물의 고주파수 대역 유체/구조 연성 소음진동예측을 위한 에너지흐름유한요소해석 (Energy Flow Finite Element Analysis for High Frequency Acoustic and Vibrational Prediction of Complicated Plate Structures Considering Fluid-Structure Interaction)

  • 윤태흠;박영호
    • 대한조선학회논문집
    • /
    • 제60권1호
    • /
    • pp.20-30
    • /
    • 2023
  • In this paper, the Energy Flow Finite Element Analysis (EFFEA) was performed to predict the acoustic and vibrational responses of complicated plate structures considering improved Fluid-Structure Interaction (FSI). For this, a new power transfer relationship was derived at the area junction where two different fluids are in contact on both sides of the plate. In order to increase the reliability of EFFEA of complicated plate structures immersed in a high-density fluid, the corrected flexural wavenumber and group velocity considering fluid-loading effect were derived. As the specific acoustic impedance of the fluid in contact with the plate increases, the flexural wavenumber of the plate increases. As a result, the flexural group velocity is reduced, and the spatial damping effect of the flexural energy density is increased. Additionally, for the EFFEA of arbitary-shaped built-up structures, the energy flow finite element formulation for the acoustic tetrahedral element was newly performed. Finally, for validation of the derived theory and developed software, numerical applications of complicated plate structures submerged in seawater or air were successfully performed.

하니콤 샌드위치 구조물의 수리 시 반복 경화에 따른 강도 특성 평가 (Evaluation of Strength Characteristics of HoneyComb Sandwitch Structure Due to the Repeated Curing Cycle in Repair Process)

  • 손영준;이기현;김국진;한중원;김윤해
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.83-87
    • /
    • 2002
  • Aerospace industries are widely using honeycomb sandwich structures that it has high specific strength and stiffness, chemical material resistance and fatigue resistance. But, in repairing process of damaged areas, one of the problems is that delamination can be occurred in the sound areas during and/or after the exposure to the elevated curing temperature in case that the repair process is repeated. Therefore, this study was conducted Flatwise tensile, Drum peel and Long beam flexural strength tests to evaluate the degree of degradation of mechanical properties of the honeycomb sandwich structures by affecting thermal aging. As the results, the decrease of mechanical strength was observed at the specific specimen which is exposed over 50hrs at $127^{\circ}C$.

  • PDF

배합요인이 경량 폴리머 모르터의 강도에 미치는 영향 (Influence of Mixed Proportion Factors on Strength of Polymer Mortar)

  • 이윤수
    • 한국농공학회지
    • /
    • 제41권1호
    • /
    • pp.97-105
    • /
    • 1999
  • Recently , polymer concrete has been widely used in the construction industry because of its quick setting, high strength, excellect adhesion, watertightness and chemical resistance compared to ordinary cement concrete. Its application is also increased. In this paper, lightweight polymer mortars using unsaturated polyester resin and lightweight aggregate are prepared with various mix proportations, and tested for slump working life, apparent specific gravity , flexural and compressive strengths. As a result, the slump and working life can be controlled and thier flexural and compressive strengths are 9.7 to 22.0 MPa , and 23.0 to 100.8 MPa respectively at apparent specific gravities of 0.86 to 1.73.

  • PDF

Experimental and microstructural evaluation on mechanical properties of sisal fibre reinforced bio-composites

  • Kumar, B. Ravi;Hariharan, S.S.
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.299-306
    • /
    • 2019
  • The natural fibre composites are termed as bio-composites. They have shown a promising replacement to the current carbon/glass fibre reinforced composites as environmental friendly materials in specific applications. Natural fibre reinforced composites are potential materials for various engineering applications in automobile, railways, building and Aerospace industry. The natural fibre selected to fabricate the composite material is plant-based fibre e.g., sisal fibre. Sisal fibre is a suitable reinforcement for use in composites on account of its low density, high specific strength, and high hardness. Epoxy is a thermosetting polymer which is used as a resin in natural fibre reinforced composites. Hand lay-up technique was used to fabricate the composites by reinforcing sisal fibres into the epoxy matrix. Composites were prepared with the unidirectional alignment of sisal fibres. Test specimens with different fibre orientations were prepared. The fabricated composites were tested for mechanical properties. Impact test, tensile test, flexural test, hardness test, compression test, and thermal test of composites had been conducted to assess its suitability in industrial applications. Scanning electron microscopy (SEM) test revealed the microstructural information of the fractured surface of composites.

실리카흄 및 플라이애쉬.시멘트 복합체의 역학적 특성에 관한 실험적 연구 (An Experimental Study on the Mechanical Properties of Silica Fume and Fly Ash.Cement Composites)

  • 박승범;윤의식
    • 콘크리트학회지
    • /
    • 제6권5호
    • /
    • pp.158-170
    • /
    • 1994
  • 본 연구는 산업부산물의 플라이애쉬 및 실리카흄을 이용한 고성능$\cdot$고품질의 건재의 제조 및 응용을 위하여 보강재로서 PAN계 및 Pitch계 탄소섬유를 사용하여 건재용 탄소섬유보강 실리카흄$\cdot$시멘트 복합체 및 플라이애쉬$\cdot$시멘트 복합체를 제조하여 배합조건별 동복합체의 물리적 역학적 특성에 관한 연구를 수행하였다. 시험결과, 탄소섬유보강 실리카흄$\cdot$시멘트 복합체의 휨강도, 휨인성 및 휨변형 특성은 탄소섬유 혼입율증대에 수반하여 현저히 증가하는 경향을 나타내었고, 또 이들 값은 PAN계 CF를 사용한 경유가 Pitch계 CH를 사용한 경우에 비하여 높게 나타났다. 한편, 플라이애쉬$\cdot$시멘트 복합체는 플라이애쉬 대체율의 증가에 따라 물(플라이애쉬+시멘트)비는 증가하였으나, 압축$\cdot$휨강도 및 겉보기 비중은 저하하였으며 촉진양생은 경우가 습윤양생한 경우에 비하여 우수한 압축강도 및 휨강도를 나타내었다. 또한, 기존ALC의 대체를 위한 경량 플라이애쉬\ulcorner시멘트 복합체를 개발하였고, 그 최적배합조건을 제시하였다.

Interpreting Conservativeness in Design Criteria for Flexural Strengthening of RC Structures Using Externally Bonded FRP

  • Kansara, Kunal D.;Ibell, Tim J.;Darby, Antony P.;Evernden, Mark
    • International Journal of Concrete Structures and Materials
    • /
    • 제4권1호
    • /
    • pp.25-36
    • /
    • 2010
  • This paper presents the influence of various flexural strengthening design criteria specified by three important design guidelines (ACI440, TR55, FIB14) on the resulting strength, ductility and conservativeness of FRP strengthened RC elements. Various generalised mathematical relations in non-dimensional form are presented that can be employed to develop design aids for the FRP-strengthening process. A design methodology is prescribed based on these equations enabling the designer to optimally and intuitively incorporate sufficient ductility while designing for strength. In order to better interpret conservativeness within design codes, four distinct levels of embedded conservativeness are identified, which cover the entire range of sources of conservativeness. Finally, a detailed parametric study is presented, using the proposed design equations and methodology, to determine the influence of each of these four levels of conservativeness on final design solutions. Specific criteria that are useful while calibrating design guidelines are also presented.

입자의 크기에 따른 흑연 보강 전도성 고분자 복합재료의 특성 연구 (Effect of particle size on graphite reinforced conductive polymer composites)

  • 허성일;윤진철;오경석;한경섭
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 춘계학술발표대회 논문집
    • /
    • pp.257-260
    • /
    • 2005
  • Graphite reinforced conductive polymer composites were fabricated by the compression molding technique. Graphite powder was mixed with an phenol resin to impart electrical property in composites. The ratio and particle size of graphite powder were varied to investigate electrical conductivity of cured composites. In this study, graphite reinforced conductive polymer composites with high filler loadings(>66wt.%) were manufactured to accomplish high electrical conductivity. With increasing the loading ratio of graphite powder, the electrical conductivity and flexural strength increased. However. above 80wt.% filler loadings, flexural strength decreased due to lack of resin. Regardless of graphite particle size, electrical conductivity wasn’t varied. On the other hand, with decreasing particle size, flexural strength increased due to high specific surface area.

  • PDF

자기변형 센서 바이어스 자기계의 요크 위상최적설계 (Yoke Topology Optimization of the Bias Magnetic System in a Magnetostrictive Sensor)

  • 김윤영;김우철
    • 대한기계학회논문집A
    • /
    • 제28권7호
    • /
    • pp.923-929
    • /
    • 2004
  • A magnetostrictive sensor is a sensor measuring elastic waves. Because of its unique non-contact measurement feature, the sensor receives more attentions in recent years. These sensors have been mainly used to measure longitudinal and torsional waves in ferromagnetic waveguides, but there increases an interest in using the sensor for flexural wave measurement. Since the performance of the sensor is strongly influenced by the applied bias magnetic field distribution, the design of the bias magnetic system providing the desired magnetic field is critical. The motivation of this investigation is to design a bias magnetic system consisting of electromagnets and yokes and the specific objective is to formulate the design problem as a bias yoke topology optimization. For the formulation, we employ linear magnetic behavior and examine the optimized results for electromagnets located at various locations. After completing the design optimization, we fabricate the prototype of the proposed bias magnetic system, and test its performance through flexural wave measurements.

워핑을 고려한 일축 대칭단면을 갖는 Timoshenko보의 휨-비틀림 연성진동 (Coupled Flexural-Torsional Vibrations of Timoshenko Beams of Monosymmetric Cross-Section including Warping)

  • 이병구;오상진;진태기;이종국
    • 소음진동
    • /
    • 제9권5호
    • /
    • pp.1012-1018
    • /
    • 1999
  • This paper deals with the coupled flexural-torsional vibrations of Timoshenko beams with monosymmetric cross-section. The governing differtial equations for free vibration of such beams are derived and solved numerically to obtain frequencies and mode shapes. Numerical results are calculated for three specific examples of beams with free-free, clamped-free, hinged-hinged, clamped-hinged and clamped-clamped end constraints. The effect of warping stiffess on the natural frequencies and mode shapes is discussed and it is concluded that substantial error can be incurred if the effect is ignored.

  • PDF

Flexural strength of roller compacted concrete pavements reinforced with glass-roved textiles

  • Madhkhan, Morteza;Nowroozi, Saeid;Torki, Mohammad E.
    • Structural Engineering and Mechanics
    • /
    • 제55권1호
    • /
    • pp.137-160
    • /
    • 2015
  • The one-way (two-way) flexural strength of RCC prisms (circular slabs) reinforced with glass fiber textiles is addressed. To this end, alkaline-resistant glass fiber textiles with three surface weights were used in the composite, the matrix concrete was designed with zero/nonzero slump, and the textiles were used with/without an intermediate layer provided by epoxy resin and sand mortar. Prisms were tested under a four-point loading apparatus and circular slabs were placed on simple supports under a central load. Effects of the amount and geometry of reinforcement, matrix workability, and the intermediate layer on the ultimate load and deflection were investigated. Results revealed that, with a specific reinforcement amount, there is an optimum textile tex for each case, depending on the matrix mix design and the presence of intermediate layer. Similar results were obtained in one-way and two-way bending tests.