• Title/Summary/Keyword: specific discharge

Search Result 608, Processing Time 0.04 seconds

Concepts and Geomorphic Properties on Fluvial Terraces (하안단구의 개념과 지형 특성)

  • Lee, Gwang-Ryul
    • The Korean Journal of Quaternary Research
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2011
  • To reinterpret the meaning of fluvial terraces in the Quaternary researches, the concepts and geomorphic properties of fluvial terraces are reviewed. Fluvial terraces are the alluvial landform that was once river channel or floodplain by paleochannel flowed in elevated areas from the current river by active incision of rivers due to the climatic changes and/or uplifts. As fluvial terraces are the remnants of alluviums after incisions of rivers, the major factors influencing on the incisions are the falling of erosion base, increase of river discharge and distinct geomorphic phenomenon of river. While it is generally known that fluvial terraces deposits in the upper or middle reaches of large rivers were formed during glacial periods, the deposits may be formed at the various periods due to the diverse natural environments and geomorphic properties of specific rivers, because there have been numerous cases that the ages of fluvial terraces in the upper or middle reaches of large rivers in Korea and China can be correlated to the interglacial periods.

  • PDF

Sediment Bacterial Community Structure under the Influence of Different Domestic Sewage Types

  • Zhang, Lei;Xu, Mengli;Li, Xingchen;Lu, Wenxuan;Li, Jing
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.9
    • /
    • pp.1355-1366
    • /
    • 2020
  • Sediment bacterial communities are critical to the biogeochemical cycle in river ecosystems, but our understanding of the relationship between sediment bacterial communities and their specific input streams in rivers remains insufficient. In this study, we analyzed the sediment bacterial community structure in a local river receiving discharge of urban domestic sewage by applying Illumina MiSeq high-throughput sequencing. The results showed that the bacterial communities of sediments samples of different pollution types had similar dominant phyla, mainly Proteobacteria, Actinobacteria, Chloroflexi and Firmicutes, but their relative abundances were different. Moreover, there were great differences at the genus level. For example, the genus Bacillus showed statistically significant differences in the hotel site. The clustering of bacterial communities at various sites and the dominant families (i.e., Nocardioidaceae, and Sphingomonadaceae) observed in the residential quarter differed from other sites. This result suggested that environmentally induced species sorting greatly influenced the sediment bacterial community composition. The bacterial co-occurrence patterns showed that the river bacteria had a nonrandom modular structure. Microbial taxonomy from the same module had strong ecological links (such as the nitrogenium cycle and degradation of organic pollutants). Additionally, PICRUSt metabolic inference analysis showed the most important function of river bacterial communities under the influence of different types of domestic sewage was metabolism (e.g., genes related to xenobiotic degradation predominated in residential quarter samples). In general, our results emphasize that the adaptive changes and interactions in the bacterial community structure of river sediment represent responses to different exogenous pollution sources.

Floods and Flood Warning in New Zealand

  • Doyle, Martin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.20-25
    • /
    • 2012
  • New Zealand suffers from regular floods, these being the most common source of insurance claims for damage from natural hazard events in the country. This paper describes the origin and distribution of the largest floods in New Zealand, and describes the systems used to monitor and predict floods. In New Zealand, broad-scale heavy rainfall (and flooding), is the result of warm moist air flowing out from the tropics into the mid-latitudes. There is no monsoon in New Zealand. The terrain has a substantial influence on the distribution of rainfall, with the largest annual totals occurring near the South Island's Southern Alps, the highest mountains in the country. The orographic effect here is extreme, with 3km of elevation gained over a 20km distance from the coast. Across New Zealand, short duration high intensity rainfall from thunderstorms also causes flooding in urban areas and small catchments. Forecasts of severe weather are provided by the New Zealand MetService, a Government owned company. MetService uses global weather models and a number of limited-area weather models to provide warnings and data streams of predicted rainfall to local Councils. Flood monitoring, prediction and warning are carried out by 16 local Councils. All Councils collect their own rainfall and river flow data, and a variety of prediction methods are utilized. These range from experienced staff making intuitive decisions based on previous effects of heavy rain, to hydrological models linked to outputs from MetService weather prediction models. No operational hydrological models are linked to weather radar in New Zealand. Councils provide warnings to Civil Defence Emergency Management, and also directly to farmers and other occupiers of flood prone areas. Warnings are distributed by email, text message and automated voice systems. A nation-wide hydrological model is also operated by NIWA, a Government-owned research institute. It is linked to a single high resolution weather model which runs on a super computer. The NIWA model does not provide public forecasts. The rivers with the greatest flood flows are shown, and these are ranked in terms of peak specific discharge. It can be seen that of the largest floods occur on the West Coast of the South Island, and the greatest flows per unit area are also found in this location.

  • PDF

Evaluation of Risk Factors to Detect Anomaly in Water Supply Networks Based on the PROMETHEE and ANP (상수도관망의 이상징후 판정을 위한 위험요소 평가 - PROMETHEE와 ANP 기법 중심으로)

  • Hong, Sung-Jun;Lee, Yong-Dae;Kim, Sheung-Kown;Kim, Joong-Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.1 s.162
    • /
    • pp.35-46
    • /
    • 2006
  • In this study, we proposed a layout of the integrated decision support system in order to prevent the contamination and to manage risk in water supply networks for safe and smooth water supply. We evaluated the priority of risk factors to detect anomaly in water supply networks using PROMETHEE and ANP techniques, which are applied to various Multi-Criteria Decision Making area in Europe and America. To develop the model, we selected pH, residual chlorine concentration, discharge, hydraulic pressure, electrical conductivity, turbidity, block leakage and water temperature as the key data item. We also chose pipe corrosion, pipe burst and water pollution in pipe as the criteria and then we present the results of PROMETHEE and ANP analysis. The evaluation results of the priority of risk factors in water supply networks will provide basic data to establish a contingency plan for accidents so that we can establish the specific emergency response procedures.

Efficacy of Intraoperative Facial Electromyographic Monitoring in Patients with Hemifacial Spasm

  • Park, Hae-Kwan;Jang, Kyung-Sool;Lee, Kyung-Jin;Rha, Hyung-Kyun;Joo, Won-Il;Kim, Moon-Chan
    • Journal of Korean Neurosurgical Society
    • /
    • v.39 no.3
    • /
    • pp.183-187
    • /
    • 2006
  • Objective : Hemifacial spasm has characteristic and specific electrophysiological finding, lateral spread response[LSR]. We study the correlation between change of lateral spread response during microvascular decompression[MVD] and clinical outcome after MVD. Methods : Sixty two patients with hemifacial spasm who were treated with microvascular decompression from March 2000 to February 2003 were included in this study. The monitoring of intraoperative facial electromyography[EMG] and brain stem auditory evoked potential were performed. Results : In 28 [44.7%] patients, there was persistence of lateral spread response after vascular decompression in root exit zone of facial nerve. Among these 28 patients, 9 had mild hemifacial spasm at discharge. Three out of 34 patients who had intraoperative disappearance of lateral spread response after MVD had mild hemifacial spasm. But Both groups, disappearance of LSR [Group I], and persistence [Group II] had only 2 patients with mild hemifacial spasm, and 5 patients at 3 months, respectively. Conclusion : Although intraoperative EMG monitoring is very useful in assessing the efficacy of MVD, the clinical outcome of MVD in patient with hemifacial spasm does not always correlate with EMG finding. The prognostic value of intraoperative LSR monitoring in the long-term results is questionable.

Estimation of Probable Maximum Flood by Duration using Creager Method (Creager 기법을 이용한 지속시간별 가능최대홍수량 산정)

  • Kang, Boo-Sik;Ryu, Seung-Yeop
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.1
    • /
    • pp.77-84
    • /
    • 2011
  • The methods of the rational formula and Kajiyama formula have been widely used for estimating the peak flood for design to all kind of hydraulic structure. However, there are many limitations and we have to apply these methods to ungauged basin. These methods require to calculate the Probable Maximum Precipitation (PMP) before determining the Probable Maximum Flood (PMF). Creager's method (Creager et al., 1945) is a kind of estimation of specipic flood and this method provided nonlinear equations based on relationship between the drainage area and PMF in order to calculate the PMF of multipurpose dams over medium-sized. But this method has not much applied in Korea. Creager's coefficient is not clear about its application because this method has never been applied to dams in Korea. Based on the PMP for rainfull-runoff models with the PMF of small and larger dams in this research, the range and standard of Creager's coefficients with parameters are proposed to apply basin areas in Korea.

A Case Report on Korean Medical Treatment for a Patient with Chronic Nausea and Vomiting Syndrome (만성 오심 구토 증후군 환자의 한의치료 1례)

  • Kim, Hakkyeom;Park, Jiyoon;Moon, Jiseong;Kim, Yeseul;Min, Seonwoo;Ahn, Lib;Lim, Seong-woo
    • The Journal of Internal Korean Medicine
    • /
    • v.42 no.5
    • /
    • pp.967-975
    • /
    • 2021
  • This study investigated the case of a nineteen-year-old female patient with chronic nausea, vomiting, and abdominal distension, who was diagnosed with CNVS and Spleen-Qi deficiency. Subjective symptoms were recorded with the Numerical Rating Scale (NRS) every morning, and the Gastrointestinal Symptom Rating Scale (GSRS) was used on the days of admission and discharge. For eleven days following admission, she took Bojungikki-tang-gagam and received acupuncture and moxibustion therapy. After three days of treatment, her nausea and vomiting ceased, and abdominal distension improved from NRS 3 to 0 after seven days of treatment. The GSRS score for the specific symptoms improved from 3 to 2; however, the total score remained largely unchanged (from 20 to 21). This case suggests that Korean medical treatment may improve CNVS.

Study on Energy Independence Plan and Economic Effects for Sewage Treatment Plant (하수처리시설의 에너지자립화 및 경제적 효과분석)

  • Park, Kihak;Lee, Hosik;Ha, Junsu;Kim, Keugtae;Lim, Chaeseung
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.2
    • /
    • pp.128-136
    • /
    • 2021
  • It is generally known that a wastewater treatment plant (WWTP) consumes immense energy even if it can produce energy. With an aim to increase the energy independence rate of WWTP from 3.5% in 2010 to 50% in 2030, the Korean government has invested enormous research funds. In this study, cost-effective operating alternatives were investigated by analyzing the energy efficiency and economic feasibility for biogas and power generation using new and renewable energy. Based on the US EPA Energy Conservation Measures and Korea ESCO projects, energy production and independence rate were also analyzed. The main energy consumption equipment in WWTP is the blower for aeration, discharge pump for effluent, and pump for influent. Considering the processes of WWTP, the specific energy consumption rate of the process using media and MBR was the lowest (0.549 kWh/㎥) and the highest (1.427 kWh/㎥), respectively. Energy-saving by enhancing anaerobic digester efficiency was turned out to be efficient when in conjunction with stable wastewater treatment. The result of economic analysis (B/C ratio) was 2.5 for digestive gas power generation, 0.86 for small hydropower, 0.49 for solar energy, and 0.15 for wind energy, respectively. Furthermore, it was observed that the energy independence rate could be enhanced by installing energy production facilities such as solar and small hydropower and reducing energy consumption via the replacement of high-efficiency operating.

Controlled Synthesis of FeSe2 Nanoflakes Toward Advanced Sodium Storage Behavior Integrated with Ether-Based Electrolyte

  • Chen, Yalan;Zhang, Jingtong;Liu, Haijun;Wang, Zhaojie
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850141.1-1850141.11
    • /
    • 2018
  • Sodium ion batteries based on the more sodium source reserve than that of lithium have been designed as promising alternatives to lithium ion batteries. However, several problems including unsatisfied specific capacity and serious cyclic stability must be solved before the reality. One of the effective approaches to solve the abovementioned problems is to search for suitable anode materials. In this work, we designed and prepared $FeSe_2$ nanoflakes via a simple hydrothermal method which can be adjusted in composition by Fe precursor. As a potential anode for sodium storage, the optimized $FeSe_2$ electrode was further evaluated in different electrolytes of $NaClO_4$ in propylene carbonate/fluoroethylene carbonate and $NaCF_3SO_3$ in diethylene glycol dimethyl ether. The capacity was about $470mAh\;g^{-1}$ and $535mAh\;g^{-1}$ at $0.5A\;g^{-1}$, respectively, in the voltage between 0.5 V and 2.9 V in the cycle of stabilization phase. Superior performance both in capacity and in stability was obtained in ether-based electrolyte, which affords the property without plugging the intermediates of transition metal dichalcogenides during charge/discharge processes.

KOH Activated Nitrogen Doped Hard Carbon Nanotubes as High Performance Anode for Lithium Ion Batteries

  • Zhang, Qingtang;Li, Meng;Meng, Yan;Li, An
    • Electronic Materials Letters
    • /
    • v.14 no.6
    • /
    • pp.755-765
    • /
    • 2018
  • In situ nitrogen doped hard carbon nanotubes (NHCNT) were fabricated by pyrolyzing tubular nitrogen doped conjugated microporous polymer. KOH activated NHCNT (K-NHCNT) were also prepared to improve their porous structure. XRD, SEM, TEM, EDS, XPS, Raman spectra, $N_2$ adsorption-desorption, galvanostatic charging-discharge, cyclic voltammetry and EIS were used to characterize the structure and performance of NHCNT and K-NHCNT. XRD and Raman spectra reveal K-NHCNT own a more disorder carbon. SEM indicate that the diameters of K-NHCNT are smaller than that of NHCNT. TEM and EDS further indicate that K-NHCNT are hollow carbon nanotubes with nitrogen uniformly distributed. $N_2$ adsorption-desorption analysis reveals that K-NHCNT have an ultra high specific surface area of $1787.37m^2g^{-1}$, which is much larger than that of NHCNT ($531.98m^2g^{-1}$). K-NHCNT delivers a high reversible capacity of $918mAh\;g^{-1}$ at $0.6A\;g^{-1}$. Even after 350 times cycling, the capacity of K-NHCNT cycled after 350 cycles at $0.6A\;g^{-1}$ is still as high as $591.6mAh\;g^{-1}$. Such outstanding electrochemical performance of the K-NHCNT are clearly attributed by its superior characters, which have great advantages over those commercial available carbon nanotubes ($200-450mAh\;g^{-1}$) not only for its desired electrochemical performance but also for its easily and scaling-up preparation.