• Title/Summary/Keyword: specific antibodies

Search Result 707, Processing Time 0.028 seconds

Stimulation of the Immune Response by Yanggyuksanhwa-tang (소양인 양격산화탕의 면역 활성화 연구)

  • Jung, Da-Young;Ha, Hye-Kyung;Lee, Ho-Young;Lee, Jin-Ah;Lee, Nam-Hun;Lee, Jun-Kyoung;Huang, Dae-Sun;Shin, Hyeun-Kyoo
    • Journal of Sasang Constitutional Medicine
    • /
    • v.22 no.4
    • /
    • pp.77-84
    • /
    • 2010
  • 1. Objectives Yanggyuksanhwa-tang for Soyangin was applied to investigate the immunological activities on antigen (Ag)-specific or Ag-non-specific immune responses on murine macrophage cell line (RAW 264.7) and ovalbumin/aluminium (OVA/Alum)-immunized mice. 2. Methods This study were carried out in nitric oxide (NO) synthesis on RAW 264.7 cells and cellular proliferation on mouse splenocytes. C57BL/6 mice were immunized intraperitonially with OVA/Alum (100 ${\mu}g$/200 ${\mu}g$) on day 1, 8, and 15. Yanggyuksanhwa-tang was administrated to mice orally for 3 weeks from day 1. On day 22, OVA-, lipopolysaccharide (LPS)-, and concanavalin A (Con A)-stimulated splenocyte proliferation and antibodies (OVA-specific antibodies of the IgG, IgG1, and total IgM classes) in plasma were measured. 3. Results Yanggyuksanhwa-tang significantly enhanced cellular proliferation by LPS and Con A on splenocytes from OVA/Alum-immunized mice (p<.001). Yanggyuksanhwa-tang also significantly enhanced plasma OVA-specific IgG (p<.001), IgG1 (p<.001), and total IgM (p<.01) levels compared with the OVA/Alum group. 4. Conclusions These results suggested that Yanggyuksanhwa-tang for Soyangin could be used as immunopotent.

Immunoelectron-microscopic localization of antigenic sites of cryptosporidium parvum and an assessment of the role of monoclonal antibodies and hyperimmune bovine colostrum in controlling cryptosporidiosis

  • Cho, Myung-Hwan
    • The Microorganisms and Industry
    • /
    • v.16 no.2
    • /
    • pp.2-9
    • /
    • 1990
  • This paper outlines research to study two aspects of Cryptooridium. First, specific antigenic determinants were identified and followed through the growth cycle of C. parvum to investigate antigenic sharing of molecular epitopes among the different life cycle stages. Secondly, the importance of passive immune protective mechanisms in cryptosporidial infection was assessed by following the course of infection in neonatal mice which have been subjected to treatments using either monoclonal antibodies (mAbs) or hyperimmune bovine colostrum.

  • PDF

Identification of Soybean Glycinin Precursor In Vitro (대두 세포내에서 Glycinin 전구체의 존재 확인)

  • 김정호
    • Journal of Plant Biology
    • /
    • v.32 no.1
    • /
    • pp.51-65
    • /
    • 1989
  • Glycinin is the major storage protein in soybean. It has been known that a molecule of glycinin is composed of 6 subunits, each of which consists of two different kinds of polypeptides, acidic (A) and basic (B) one (NW 39K and 19K, respectively). To study the molecular origin and the relationship of glycinin subunit polypeptides, antibodies against A-and B-polypeptide were obtained by immunizing rabbits with either of the antigens purified by gel filtration and preparative electrophoresis. Each antibody was not only specific for its own antigen polypeptide in soybeans but also recoginzed the precursor which was synthesized in vivo and in vitro. The polyadenylated mRNAs were isolated from immature seeds and leaves and were translated in vitro using wheat germ extract. One of the seed-specific translation products. MW 60K, was identified to be the precursor of glycinin subunit by immunoprecipitation with antibodies against glycinin A- and B-polypeptide. Mature A- and B-polypeptides were not detected in the translte in vitro. These results suggest that the precursor polypeptide is synthesized from the mRNA and is cleaved to yield A- and B-polypeptides which from a glycinin subunit in the cell. Glycinin genes were expressed with the maturation of soybean seeds in a tissue-specific and developmental stage-specific manner.

  • PDF

Molecular Cloning and Characterization of CDNA Encoding Immunoglobulin Heavy and Light chain Variable Regions from Four Chicken Monoclonal Antibodies Specific to Surface Antigens of Intestinal Parasite, Eimeria acervulina

  • Song, Ki-Duk;Han, Jae-Yong;Wongi Min;Hyun S. Lillehoj;Kim, Sung-Won;Kim, Jin-Kyoo
    • Journal of Microbiology
    • /
    • v.39 no.1
    • /
    • pp.49-55
    • /
    • 2001
  • We have developed four chicken hybridomas secreting monoclonal antibodies to induce a protective immune response against the chicken disease avian coccidiosis, caused by the intestinal parasite Eimeria acervulina. Huwever, since the amount of antibodies secreted from these hybridomas is too low or sometimes they lost their ability to produce antibodies, the hybridoma method is not satisfactory in the production of large amounts of chicken monoclonal antibodies. To bypass these problems, we applied the antibody engineering technology using polymerase chain reaction. We cloned and determined the sequences of variable domains of the four chicken monoclonal antibodies, namely, 2-1, 5D11, 13C8 and 8C3. The sequences comparison to germline sequences skewed that the gene con version mechanism might contribute to developing diversification of heavy and λ-light chains in chicken antibodies. Several pseudogene families regarded as donors in gene conversion were identified at each framework region and the complementarily determining region of λ-light chains. In addition, as expected, numerous changes of nucleotide sequences such as nucleotide substitution, insertion and deletion were found predominantly in complementarity determining regions, which are likely to be somatic hypermutations as a result of affinity maturation in antibody-producing cells.

  • PDF

Muscle Fiber Typing in Bovine and Porcine Skeletal Muscles Using Immunofluorescence with Monoclonal Antibodies Specific to Myosin Heavy Chain Isoforms

  • Song, Sumin;Ahn, Chi-Hoon;Kim, Gap-Don
    • Food Science of Animal Resources
    • /
    • v.40 no.1
    • /
    • pp.132-144
    • /
    • 2020
  • The aim of this study was to optimize staining procedures for muscle fiber typing efficiently and rapidly in bovine and porcine skeletal muscles, such as longissimus thoracis, psoas major, semimembranosus, and semitendinosus muscles. The commercially available monoclonal anti-myosin heavy chain (MHC) antibodies and fluorescent dye-conjugated secondary antibodies were applied to immunofluorescence histology. Two different procedures, such as cocktail and serial staining, were adopted to immunofluorescence analysis. In bovine muscles, three pure types (I, IIA, and IIX) and one hybrid type, IIA+IIX, were identified by the cocktail procedure with a combination of BA-F8, SC-71, BF-35, and 6H1 anti-MHC antibodies. Porcine muscle fibers were typed into four pure types (I, IIA, IIX, and IIB) and two hybrid types (IIA+IIX and IIX+IIB) by a serial procedure with a combination of BA-F8, SC-71, BF-35, and BF-F3. Unlike for bovine muscle, the cocktail procedure was not recommended in porcine muscle fiber typing because of the abnormal reactivity of SC-71 antibody under cocktail procedure. Within the four antibodies, combinations of two or more anti-MHC antibodies allowed us to distinguish pure fiber types or all fiber types including hybrid types. Application of other secondary antibodies conjugated with different fluorescent dyes allowed us to get improved image resolution that clearly distinguished hybrid fibers. Muscle fiber characteristics differed depending on species and muscle types.

Convenient Preparation of Tumor-specific Immunoliposomes Containing Doxorubicin

  • Nam, Sang-Min;Cho, Jang-Eun;Son, Byoung-Soo;Park, Yong-Serk
    • BMB Reports
    • /
    • v.31 no.1
    • /
    • pp.95-100
    • /
    • 1998
  • Two innovative methods to prepare target-sensitive immunoliposomes containing doxorubicin by coupling monoclonal antibodies (mAb DH2, SH1) specific to cancer cell surface antigens ($G_{M3}$, $Le^X$) have been developed and are described here. Firstly, liposomes containing N-glutaryl phosphatidylethanolamine (NGPE) were prepared, followed by the encapsulation of doxorubicin, DH2 or SH1 antibodies were conjugated to NGPE in the liposomes (direct coupling). Secondly, liposomes were prepared with NGPE/mAb conjugates by the detergent dialysis method (conjugate insertion), and then doxorubicin was encapsulated by proton gradient. The immunoliposomes prepared by both methods were able to specifically bind to the surface of the tumor cells - B16BL6 mouse melanoma cells. The efficiencies of doxorubicin-entrapping into liposomes prepared by direct coupling and conjugate insertion was about 98% and 25%, respectively. These types of liposomal formulation are sensitive to target cells, which can be useful for various clinical applications.

  • PDF

Changing Patterns of Serum and Bile Antibodies in Re-infected Rats with Clonorchis sinensis

  • Zhang, Hong-Man;Chung, Byung-Suk;Li, Shun-Yu;Choi, Min-Ho;Hong, Sung-Tae
    • Parasites, Hosts and Diseases
    • /
    • v.46 no.1
    • /
    • pp.17-22
    • /
    • 2008
  • Rats develop strong resistance to re-infection and super-infection by Clonorchis sinensis. The present study investigated the antibodies present in the sera and bile juice of rats that were primary infected and re-infected with C. sinensis. The serum level of specific IgG antibodies, which were elevated 2 wk of the primary infection, peaked at 4 wk and subsequently remained unchanged even during re-infection. The total IgE level in serum increased slowly from 388 ng / ml to 3,426 ng / ml beginning 2 wk after the primary infection, and remained high up to 8 wk but dropped to a normal level (259 ng / ml) after treatment. In resistant re-infected rats, the serum IgE level increased rapidly and peaked within 1 wk, whereas no increase was observed in immunosuppressed rats. The serum level of specific IgA antibodies was elevated beginning 1 wk after infection, and decreased 4 wk after treatment. The total bile IgA level unchanged during the primary infection but increased in treated and re-infected rats. The elevated levels of serum IgE and bile IgA indicate that these immunoglobulins may be correlated with the development of resistance to re-infection by C. sinensis in rats.

Generation of Antibodies Against Rice stripe virus Proteins Based on Recombinant Proteins and Synthetic Polypeptides

  • Lian, Sen;Jonson, Miranda Gilda;Cho, Won-Kyong;Choi, Hong-Soo;Je, Yeon-Ho;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.37-43
    • /
    • 2011
  • Rice stripe virus (RSV) is one of serious epidemic pathogens for rice species grown in many Asian countries. Therefore, it is necessary to produce a diagnostic detection kit applicable in fields for RSV detection. In this study, RSV proteins that were derived from recombinant proteins and synthetic polypeptides as antigens were generated and were raised in rabbits for antiserum production. Among seven proteins in RSV, genes that code for NCP and NS3 proteins were cloned and subcloned into vector carrying His-tag protein and were expressed in E. coli. Of two recombinant proteins, only anti-NCP displayed stable hybridization signals in western blot analysis. Alternately, synthetic RSV polypeptides for CP, NCP, NS3 and NSvc4 we also generated and only antibodies against CP and NCP were very effective to detect RSV in both RSV infected rice and weed plants. However, antibodies against NS3 and NSvc4 showed weak specific bands as well as strong non-specific background due to the difference of viral proteins produced in the infected leaves. In summary, the antibodies generated against RSV proteins produced in this study will be useful for various assays such as for RSV diagnostic detection, immunoprecipitation, protein purification, and western blot analysis.

Current Status of the Research and Development of Bispecific Antibodies

  • Kwon, Sun-Il
    • Biomedical Science Letters
    • /
    • v.26 no.3
    • /
    • pp.136-148
    • /
    • 2020
  • A bispecific antibody (BsAb) is an artificial protein containing two kinds of specific antigen binding sites. BsAb can connect target cells to functional cells or molecules, and thus stimulate a directed immune response. Last several decades a wide variety of bsAb formats and production technologies have been developed. BsAbs are constructed either chemically or biologically, exploiting techniques like cell fusion and recombinant DNA technologies. There are over 100 different formats of bsAb so far developed, but they could be classified into the two main categories such as Fc-based (with a Fc region) bsAbs and fragment-based (without a Fc region) bsAbs. BsAb has a broad application prospect in tumor immunotherapy and drug delivery. Here, we present a brief introduction to the structure of antibody, pharmacological mechanisms of antibodies and the trend in the production technologies of therapeutic antibodies. In addition, we address a review on the current status of various bsAb format development and their production technologies together with global situation in the clinical studies of bsAb.

A Dipstick-Type Enzyme-Linked Immunosorbent Assay for the Detection of the Insecticide Fenitrothion in Food Samples

  • Cho, Young-Ae;Shim, Jee-Youn;Lee, Yong-Tae;Lee, Hye-Sung
    • Food Science and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.990-992
    • /
    • 2006
  • In a previous study, we obtained polyclonal antibodies against the organophosphorus insecticide fenitrothion and developed an enzyme-linked immunosorbent assay (ELISA) for this pesticide. Using these antibodies and an enzyme tracer, a direct competitive ELISA method specific for fenitrothion using a dipstick format was developed. Dipstick ELISA using antibodies to fenitrothion immobilized on an Immunodyne membrane allowed the quick visual detection of fenitrothion at concentrations above $10\;{\mu}g/L$. The $IC_{50}$ value of dipstick ELISA using reflectance detection was $27\;{\mu}g/L$ with a detection limit of $2\;{\mu}g/L$. The recovery of fenitrothion from spiked lettuce and rice samples using the dipstick ELISA ranged from 87-107%.