DOI QR코드

DOI QR Code

Current Status of the Research and Development of Bispecific Antibodies

  • Kwon, Sun-Il (Department of Biomedical Laboratory Science, Deagu Health Science University)
  • Received : 2020.08.20
  • Accepted : 2020.09.14
  • Published : 2020.09.30

Abstract

A bispecific antibody (BsAb) is an artificial protein containing two kinds of specific antigen binding sites. BsAb can connect target cells to functional cells or molecules, and thus stimulate a directed immune response. Last several decades a wide variety of bsAb formats and production technologies have been developed. BsAbs are constructed either chemically or biologically, exploiting techniques like cell fusion and recombinant DNA technologies. There are over 100 different formats of bsAb so far developed, but they could be classified into the two main categories such as Fc-based (with a Fc region) bsAbs and fragment-based (without a Fc region) bsAbs. BsAb has a broad application prospect in tumor immunotherapy and drug delivery. Here, we present a brief introduction to the structure of antibody, pharmacological mechanisms of antibodies and the trend in the production technologies of therapeutic antibodies. In addition, we address a review on the current status of various bsAb format development and their production technologies together with global situation in the clinical studies of bsAb.

Keywords

References

  1. 2019 Pharmaceutical Industry DATABOOK Statistic Information, 2019. KPBMA (Korea Pharmaceutical and Bio-Pharma Manufacturers Association). Korea.
  2. Abclon. homepage. 2020. http://www.abclon.com/the/therapeutic_-antibody02.asp
  3. ABLBio. homepage. 2020. https://www.ablbio.com/kr/company/pipeline01
  4. Almagro JC, Fransson J. Humanization of antibodies. Front Biosci. 2008. 13: 1619-1633.
  5. Brinkmann U, Kontermann RE. The making of bispecific antibodies. MAbs. 2017. 9: 182-212. https://doi.org/10.1080/19420862.2016.1268307
  6. Cha SH. Trend in the development of therapeutic antibodies II. Bispecific antibody. Jun 2011. The News Letters of the Korea Association of Biochemistry and Molecular Biology. Korea.
  7. CKD Pharma. homepage. 2020. http://www.ckdpharm.com/research/project.do
  8. ClinicalTrails,gov. homepage. 2020. https://www.clinicaltrials.gov/ct2/home
  9. Creative Biolabs. homepage. 2020 Aug. https://www.creativebiolabs.com/bsab/
  10. DiMasi N, Fleming R, Wu H, Gao C. Molecular engineering strategies and methods for the expression and purification of IgG1-based bispecific bivalent antibodies. Methods. 2019. 154: 77-86. https://doi.org/10.1016/j.ymeth.2018.08.004
  11. Eutilex. homepage. 2020. http://www.eutilex.com/sub3/sub1.php
  12. EvaluatePharma World Preview 2019, Outlook to 2024. June 04, 2019. https://www.evaluate.com/thought-leadership/pharma/evaluatepharma-world-preview-2019-outlook-2024
  13. Frenzel A, Schirrmann T, Hust M. Phage display-derived human antibodies in clinical development and therapy. MAbs. 2016. 8: 1177-1194. https://doi.org/10.1080/19420862.2016.1212149
  14. Gul N, van Egmond M. Antibody-dependent phagocytosis of tumor cells by macrophages: A potent effector mechanism of monoclonal antibody therapy of cancer. Cancer Res. 2015. 75: 5008-5013. https://doi.org/10.1158/0008-5472.CAN-15-1330
  15. Ha JH, Kim JE, Kim YS. Immunoglobulin Fc Heterodimer Platform Technology: From Design to Applications in Therapeutic Antibodies and Proteins. Front Immunol. 2016. 7: article 394.
  16. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011. 144: 646-674. https://doi.org/10.1016/j.cell.2011.02.013
  17. Hanes J, Pluckthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proc Natl Acad Sci U S A. 1997. 94: 4937-4942. https://doi.org/10.1073/pnas.94.10.4937
  18. Hanmi Pharma. homepage. 2020. http://www.hanmi.co.kr/hanmi/handler/Rnd-Pentambody
  19. Husain B. Ellerman D. Expanding the boundaries of biotherapeutics with bispecific antibodies. BioDrugs. 2018. 32: 441-464. https://doi.org/10.1007/s40259-018-0299-9
  20. Kim SW, Lee EK. Trend in the global antibody medicine market and technology development. Bioeconomy Report. Korea Bioeconomy Research Center. Korea Biomedicine Industry Association. Jun 26 2020. Korea
  21. Kipriyanov SM, Moldenhauer G, Schuhmacher J, Cochlovius B, Von Der Lieth CW, Matys E, Little M. Bispecific tandem diabody for tumor therapy with improved antigen binding and pharmacokinetics. J Mol Boil. 1999. 293: 41-56. https://doi.org/10.1006/jmbi.1999.3156
  22. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975. 256: 495-497. https://doi.org/10.1038/256495a0
  23. Labrijn AF, Janmaat ML, Reichert JM, Parren PWHI. Bispecific antibodies: a mechanistic review of the pipeline. Nat Rev Drug Discov. 2019. 18: 585-608. https://doi.org/10.1038/s41573-019-0028-1
  24. Lu RM, Hwang YC, Liu IJ, Lee CC, Tsai HZ, Li HJ, Wu HC. Development of therapeutic antibodies for the treatment of diseases. J Biomed Sci. 2020. 27: 1-30. https://doi.org/10.1186/s12929-019-0592-z
  25. Mamidi S, Hone S, Kirschfink M. The complement system in cancer: Ambivalence between tumour destruction and promotion. Immunobiology. 2017. 222: 45-54. https://doi.org/10.1016/j.imbio.2015.11.008
  26. Nisonoff A, Wissler FC, Lipman LN. Properties of the major component of a peptic digest of rabbit antibody. Science. 1960. 132: 1770-1771. https://doi.org/10.1126/science.132.3441.1770
  27. Ochoa MC, Minute L, Rodriguez I, Garasa S, Perez-Ruiz E, Inoges S, Melero I, Berraondo P. Antibody-dependent cell cytotoxicity: immunotherapy strategies enhancing effector NK cells. Immunol Cell Biol. 2017. 95: 347-355. https://doi.org/10.1038/icb.2017.6
  28. Pharmabcine. homepage. 2020. http://www.pharmabcine.com/sub02/sub02.php
  29. Reusch U, Duell J, Ellwanger K, Herbrecht C, Knackmuss SH, Fucek I, Eser M, McAleese F, Molkenthin V, Le Gall F, et al. A tetravalent bispecific TandAb (CD19/CD3), AFM11, eciently recruits T cells for the potent lysis of CD19+tumor cells. MAbs. 2015. 7: 584-604. https://doi.org/10.1080/19420862.2015.1029216
  30. Ridgway JB, Presta LG, Carter P. 'Knobs-into-holes' engineering of antibody CH3 domains for heavy chain heterodimerization. Protein Eng. Des. Sel. 1996. 9: 617-621. https://doi.org/10.1093/protein/9.7.617
  31. Rodgers KR, Chou RC. Therapeutic monoclonal antibodies and derivatives: Historical perspectives and future directions. Biotechnol Adv. 2016. 34: 1149-1158. https://doi.org/10.1016/j.biotechadv.2016.07.004
  32. Rothe A, Hosse RJ, Power BE. Ribosome display for improved biotherapeutic molecules. Expert Opin Biol Ther. 2006. 6: 177-187. https://doi.org/10.1517/14712598.6.2.177
  33. Seo KW, Seo SK, Ryu SL, Uhm JH, Baek JH, Kim BC, Lee BY. Trend in the development of antibody medicine. Specialty data collection in recombinant medicine Book 6. Dec. 2015. Advanced Therapy Products Research Team. National Institute of Food and Drug Safety Evaluation. Korea Mistry of Food Drug Safety. Korea.
  34. Schaefer W, Regula JT, Bahner M, Schanzer J, Croasdale R, Durr H, Gassner C, Georges G, Kettenberger H, Imhof-Jung S, et al. Immunoglobulin domain crossover as a generic approach for the production of bispecific IgG antibodies. Proc Natl Acad Sci USA. 2011. 108: 11187-11192. https://doi.org/10.1073/pnas.1019002108
  35. Shi M, Su RJ, Parmar KP, Chaudhry R, Sun K, Rao J, Chen M. CD123: A Novel Biomarker for Diagnosis and Treatment of Leukemia. Cardiovasc Hematol Disord Drug Targets. 2019. 19: 195-204. https://doi.org/10.2174/1871529X19666190627100613
  36. Shim H. Bispecific Antibodies and Antibody-Drug Conjugates for Cancer Therapy: Technological Considerations. Biomolecules. 2020. 10: 360. https://doi.org/10.3390/biom10030360
  37. Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985. 228: 1315-1317. https://doi.org/10.1126/science.4001944
  38. Spiess C, Merchant M, Huang A, Zheng Z, Yang NY, Peng J, Ellerman D, Shatz W, Reilly D, Yansura DG, Scheer JM. Bispecific antibodies with natural architecture produced by co-culture of bacteria expressing two distinct half-antibodies. Nat Biotechnol. 2013. 31: 753-758. https://doi.org/10.1038/nbt.2621
  39. Staerz UD, Bevan MJ. Hybrid hybridoma producing a bispecific monoclonal antibody that can focus effector T-cell activity. Proc Natl Acad Sci USA. 1986. 83: 1453-1457. https://doi.org/10.1073/pnas.83.5.1453
  40. Strohl WR. Current progress in innovative engineered antibodies. Protein Cell. 2018. 9: 86-120. https://doi.org/10.1007/s13238-017-0457-8
  41. Sung DW. Trend and prospect in global biomedicine industry. Industry and Economy Team. Overseas Economy Research Center. The Export Import Bank of Korea. 2019. vol. 2019-Issue-20. Korea.
  42. Waldmann H. Human Monoclonal Antibodies: The Benefits of Humanization. Methods Mol Biol. 2019. 1904: 1-10. https://doi.org/10.1007/978-1-4939-8958-4_1
  43. Wang Q, Chen Y, Park J, Liu X, Hu Y, Wang T, McFarland K, Betenbaugh MJ. Design and Production of Bispecific Antibodies. Antibodies (Basel). 2019. 8: 43. https://doi.org/10.3390/antib8030043
  44. Wu X, Sereno AJ, Huang F, Lewis SM, Lieu RL, Weldon C, Torres C, Fine C, Batt MA, Fitchett JR, Glasebrook AL, Kuhlman B, Demarest SJ. Fab-based bispecific antibody formats with robust biophysical properties and biological activity. MAbs. 2015. 7: 470-482. https://doi.org/10.1080/19420862.2015.1022694
  45. Wu C, Ying H, Grinnell C, Bryant S, Miller R, Clabbers A, Bose S, McCarthy D, Zhu RR, Santora L, et al. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nat Biotechnol. 2007. 25: 1290-1297. https://doi.org/10.1038/nbt1345
  46. YBiologics. Homepage. 2020. http://www.ybiologics.com/kor/pipeline/index.php?gubun=3
  47. Zhang J, Yi J, Zhou P. Development of bispecific antibodies in China: overview and prospect. Antibody Therapeutics. 2020. 3: 126-145 https://doi.org/10.1093/abt/tbaa011