• 제목/요약/키워드: specific RNA

검색결과 1,718건 처리시간 0.026초

A newly developed consensus polymerase chain reaction to detect Mycoplasma species using 16S ribosomal RNA gene

  • Hong, Sunhwa;Park, Sang-Ho;Chung, Yung-Ho;Kim, Okjin
    • 한국동물위생학회지
    • /
    • 제35권4호
    • /
    • pp.289-294
    • /
    • 2012
  • Mycoplasmas are highly fastidious bacteria, difficult to culture and slow growing. Infections with Mycoplasma species can cause a variety of problems in living organisms and in vitro cell cultures. In this study, we investigated the usefulness of a genus-specific consensus PCR analysis method to detect Mycoplasma species. The developed consensus primer pairs MycoF and MycoR were designed specifically to amplify the 16S ribosomal RNA gene (rRNA) of Mycoplasma species by the optimized PCR system. The developed consensus PCR system effectively amplified 215 bp of Mycoplasma genus-specific region of 16S rRNA. In conclusion, we recommend this consensus PCR for monitoring Mycoplasma species in animals, human and cell culture system.

진화연산 기반 계층적 하이퍼네트워크 모델에 의한 암 특이적 microRNA-mRNA 상호작용 탐색 (Exploring Cancer-Specific microRNA-mRNA Interactions by Evolutionary Layered Hypernetwork Models)

  • 김수진;하정우;장병탁
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제16권10호
    • /
    • pp.980-984
    • /
    • 2010
  • microRNA (miRNA)와 mRNA 조절 상호작용 탐색은 다양한 생물학적 현상에 있어 새로운 시야를 제공해 줄 수 있다. 최근 생물학적 프로세스에서 miRNA는 유전자 발현을 제어하고 세포를 기능적으로 조절하는 중요한 역할을 하는 요소로 밝혀졌다. 이에 복잡한 생물학 시스템에서 miRNA의 기능적 활동을 이해하기 위해서는 miRNA와 mRNA간 상호작용 분석은 필수적이다. 그러나 아직까지 복잡한 miRNA와 mRNA간 상호작용 관계를 추론하는 것은 어려운 문제이기 때문에 많은 연구자들이 실험적, 전산학적 접근 방법을 제안하며 활발한 연구를 진행하고 있다. 본 논문에서는 이종의 발현 데이터로부터 기능적으로 상호작용하는 miRNA-mRNA 조합을 탐색하기 위한 진화 연산 기반의 새로운 하이퍼네트워크 모델을 제안한다. 이에 실험결과로 제안하는 방법을 인간 암 관련 miRNA와 mRNA 발현 데이터에 적용하여 암 특이적 miRNA-mRNA 상호작용 집합을 탐색하고 발견한 miRNA-mRNA 상호작용 관계가 생물학적으로 유의함을 제시한다.

Changes of Cytokine and Chemokine mRNA Expression in Whole Blood Cells from Active Pulmonary Tuberculosis Patients after T-Cell Mitogen and Mycobacterium tuberculosis Specific Antigen Stimulation

  • Kim, Sunghyun;Park, Sangjung;Lee, Hyeyoung
    • 대한의생명과학회지
    • /
    • 제20권3호
    • /
    • pp.162-167
    • /
    • 2014
  • Tuberculosis (TB) is one of the major global health problems and it has been estimated that in 5~10% of Mycobacterium tuberculosis (MTB)-infected individuals, the infection progresses to an active disease. Numerous cytokines and chemokines regulate immunological responses at cellular level including stimulation and recruitment of wide range of cells in immunity and inflammation. In the present study, the mRNA expression levels of eight host immune markers containing of IFN-${\gamma}$, TNF-${\alpha}$, IL-2R, IL-4, IL-10, CXCL9, CXCL10, and CXCL11 in whole blood cells from active pulmonary TB patients were measured after T-cell mitogen (PHA) and MTB specific antigens (ESAT-6, CFP-10, and TB7.7). Among the TH1-type factors, IFN-${\gamma}$ mRNA expression was peaked at 4 h, TNF-${\alpha}$ and IL-2R mRNA expression was significantly high at the late time points (24 h) in active TB patients, TH2-type cytokine (IL4 and IL10) mRNA expression levels in both active TB and healthy controls samples did not changed significantly, and the mRNA expression of the three IFN-${\gamma}$-induced chemokines (CXCL9, CXCL10, and CXCL11) were peaked at the late time points (24 h) in active TB patients after MTB specific antigen stimulation. In conclusion, the mRNA expression patterns of the TB-related immune markers in response to the T-cell mitogen (PHA) differed from those in response to MTB specific antigens and these findings may helpful for understanding the relationship between MTB infection and host immune markers in a transcripts level.

A new function of glucocorticoid receptor: regulation of mRNA stability

  • Park, Ok Hyun;Do, Eunjin;Kim, Yoon Ki
    • BMB Reports
    • /
    • 제48권7호
    • /
    • pp.367-368
    • /
    • 2015
  • It has long been thought that glucocorticoid receptor (GR) functions as a DNA-binding transcription factor in response to its ligand (a glucocorticoid) and thus regulates various cellular and physiological processes. It is also known that GR can bind not only to DNA but also to mRNA; this observation points to the possible role of GR in mRNA metabolism. Recent data revealed a molecular mechanism by which binding of GR to target mRNA elicits rapid mRNA degradation. GR binds to specific RNA sequences regardless of the presence of a ligand. In the presence of a ligand, however, the mRNA-associated GR can recruit PNRC2 and UPF1, both of which are specific factors involved in nonsense-mediated mRNA decay (NMD). PNRC2 then recruits the decapping complex, consequently promoting mRNA degradation. This mode of mRNA decay is termed "GR-mediated mRNA decay" (GMD). Further research demonstrated that GMD plays a critical role in chemotaxis of immune cells by targeting CCL2 mRNA. All these observations provide molecular insights into a previously unappreciated function of GR in posttranscriptional regulation of gene expression. [BMB Reports 2015; 48(7): 367-368]

Development of mRNA Vaccines/Therapeutics and Their Delivery System

  • Sora Son;Kyuri Lee
    • Molecules and Cells
    • /
    • 제46권1호
    • /
    • pp.41-47
    • /
    • 2023
  • The rapid development of mRNA vaccines has contributed to the management of the current coronavirus disease 2019 (COVID-19) pandemic, suggesting that this technology may be used to manage future outbreaks of infectious diseases. Because the antigens targeted by mRNA vaccines can be easily altered by simply changing the sequence present in the coding region of mRNA structures, it is more appropriate to develop vaccines, especially during rapidly developing outbreaks of infectious diseases. In addition to allowing rapid development, mRNA vaccines have great potential in inducing successful antigen-specific immunity by expressing target antigens in cells and simultaneously triggering immune responses. Indeed, the two COVID-19 mRNA vaccines approved by the U.S. Food and Drug Administration have shown significant efficacy in preventing infections. The ability of mRNAs to produce target proteins that are defective in specific diseases has enabled the development of options to treat intractable diseases. Clinical applications of mRNA vaccines/therapeutics require strategies to safely deliver the RNA molecules into targeted cells. The present review summarizes current knowledge about mRNA vaccines/ therapeutics, their clinical applications, and their delivery strategies.

Aspergillus phoenicis의 생활사를 통한 mRNA의 생합성 (Biosynthesis of messenger RNA in aspergillus phoenicis during thier life cycle)

  • 김봉수;이영록
    • 미생물학회지
    • /
    • 제26권1호
    • /
    • pp.27-31
    • /
    • 1988
  • Biosynthesis and processing of cytoplasmic mRNA from heterogenous nuclear RNA (hn-RNA) in Aspergillus phoenicis were studied by $^{3}H$-uridine labeling and synchronous culture techniques during their life cycle. Incorporations of $^{3}H$-uridine into hn-RNA and mRNA were most rapid in vesicle-phialide fromation stage and diminished in hyphal growth stage. The processing of cytoplasmic mRNA from hn-RNA was proceeded more rapidly in hyphal growth and conidiophore formation stages than in conidia and vesicle-phialide formation stages. The specific radioactivities of hn-RNA and mRNA were very high in vesicle-phialide formation stage.

  • PDF

Metallothionein Induces Site-specific Cleavages in tRNAPhe

  • Seon, Jung-Yun;Koh, Moon-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권6호
    • /
    • pp.921-924
    • /
    • 2005
  • It is known that metallothionein (MT) plays a role in the scavenging of free radicals, which is produced under various stress conditions. MT may function as an antioxidant that protects against oxidative damage of DNA, protein, and lipid induced by superoxide anion, hydrogen peroxide, hydroxyl radical, nitric oxide, and peroxynitrite. This study was undertaken to test the hypothesis that MT also protects from RNA damage induced by peroxynitrite, an important reactive nitrogen species that causes a diversity of pathological processes. A cell-free system was used. RNA damage was detected by the mobility of $tRNA^{Phe}$ in electrophoresis. Cleavages on tRNA were not induced by 3-morpholinosydnomine, which produces peroxynitrite directly. MT induced tRNA damage which was site specific.

Characterization and RT-PCR Detection of dsRNA Mycoviruses from the Oyster Mushroom, Pleurotus ostreatus

  • Seo, Jang-Kyun;Lim, Won-Seok;Jeong, Ji-Hye;Yoo, Young-Bok;Yie, Se-Won;Kim, Kook-Hyung
    • The Plant Pathology Journal
    • /
    • 제20권3호
    • /
    • pp.200-205
    • /
    • 2004
  • The partial nucleotide sequences of the genomic dsRNA mycovirus infecting Pleurotus ostreatus isolates ASI2223 and Suhan were determined and compared with those of mycoviruses belonging to partitiviruses and totiviruses. Partial nucleotide sequences of the purified dsRNA from ASI2223 and Suhan showed RNA-dependent RNA polymerase sequences that are closely related to those of partitiviruses, including Fusarium poae virus 1, Fusarium solani virus, Rhizoctoniasolani virus, Discula destructiva virus 2, and Oyster mushroom isometric virus 2. Specific primers were designed for RT-PCR detection of dsRNA viruses from the P. ostreatus isolate ASI2223 and Suhan. Two virus specific primer sets were found to specifically detect each virus among six sets of designed oligonucleotide primers. Collectively, these results suggest that dsRNA mycoviruses from P. ostreatus isolates ASI2223 and Suhan belong to the family Partitiviridae, although, they are not the same virus species. Our results also suggest that these virus-specific primer sets can be employed for the specific detection of each viral sequence in infected tissues.

Multi-tissue observation of the long non-coding RNA effects on sexually biased gene expression in cattle

  • Yoon, Joon;Kim, Heebal
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권7호
    • /
    • pp.1044-1051
    • /
    • 2019
  • Objective: Recent studies have implied that gene expression has high tissue-specificity, and therefore it is essential to investigate gene expression in a variety of tissues when performing the transcriptomic analysis. In addition, the gradual increase of long non-coding RNA (lncRNA) annotation database has increased the importance and proportion of mapped reads accordingly. Methods: We employed simple statistical models to detect the sexually biased/dimorphic genes and their conjugate lncRNAs in 40 RNA-seq samples across two factors: sex and tissue. We employed two quantification pipeline: mRNA annotation only and mRNA+lncRNA annotation. Results: As a result, the tissue-specific sexually dimorphic genes are affected by the addition of lncRNA annotation at a non-negligible level. In addition, many lncRNAs are expressed in a more tissue-specific fashion and with greater variation between tissues compared to protein-coding genes. Due to the genic region lncRNAs, the differentially expressed gene list changes, which results in certain sexually biased genes to become ambiguous across the tissues. Conclusion: In a past study, it has been reported that tissue-specific patterns can be seen throughout the differentially expressed genes between sexes in cattle. Using the same dataset, this study used a more recent reference, and the addition of conjugate lncRNA information, which revealed alterations of differentially expressed gene lists that result in an apparent distinction in the downstream analysis and interpretation. We firmly believe such misquantification of genic lncRNAs can be vital in both future and past studies.

Heterogeneous Sequences of Brain Cytoplasmic 200 RNA Formed by Multiple Adenine Nucleotide Insertions

  • Shin, Heegwon;Lee, Jungmin;Kim, Youngmi;Jang, Seonghui;Kim, Meehyein;Lee, Younghoon
    • Molecules and Cells
    • /
    • 제42권6호
    • /
    • pp.495-500
    • /
    • 2019
  • Brain cytoplasmic 200 RNA (BC200 RNA), originally identified as a neuron-specific non-coding RNA, is also observed in various cancer cells that originate from non-neural cells. Studies have revealed diverse functions of BC200 RNA in cancer cells. Accordingly, we hypothesized that BC200 RNA might be modified in cancer cells to generate cancerous BC200 RNA responsible for its cancer-specific functions. Here, we report that BC200 RNA sequences are highly heterogeneous in cancer cells by virtue of multiple adenine nucleotide insertions in the internal A-rich region. The insertion of adenine nucleotides enhances BC200 RNA-mediated translation inhibition, possibly by increasing the binding affinity of BC200 RNA for eIF4A (eukaryotic translation initiation factor 4A).