• Title/Summary/Keyword: species-specific primer

Search Result 332, Processing Time 0.044 seconds

ITS Primers with Enhanced Specificity to Detect the Ectomycorrhizal Fungi in the Roots of Wood Plants

  • Kim, Dong-Hun;Chung, Hung-Chae;Ohga, Shoji;Lee, Sang-Sun
    • Mycobiology
    • /
    • v.31 no.1
    • /
    • pp.23-31
    • /
    • 2003
  • With universal primer ITS1-F, the specific DHJ2 primer was developed to detect the Ectomycorrhizal(ECM) root tips in soil and to identify the species of ECM fungi, as based on DNA sequences of rDNA stored in GeneBank of NCBI. This primer was designed with the common sites of rDNA of Amanita and Boletus, and was also designed with several DNA programs provided by NCBI. The DNA fragments synthesized by PCR were calculated to be 1,000 to 1,200 bps of DNA located to 18s to 28s rDNA to contain two variable sites of ITS, indicating much diversities for specific species or ecotypes of ECM fungi. The primer DHJ2 reacted with the genomic DNA's extracted from the tissues of basidiocarp at the rate of 73 of 80 fungi collected produced single bands with a 1,100 bps length. The DNA fragment synthesized with the genomic DNA that extracted from eight ECM tips of Pinus densiflora was confirmed and analysized to the rDNAs of ECM in full sequences, and informed to be a ECM fungal species in the forest.

Multiplex PCR Assay for Simultaneous Detection of Korean Quarantine Phytoplasmas

  • Kim, Young-Hwan;Win, Nang Kyu;Back, Chang-Gi;Yea, Mi-Chi;Yim, Kyu-Ock;Jung, Hee-Young
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.367-371
    • /
    • 2011
  • Multiplex PCR assays were developed for the simultaneous detection of ten important Korean quarantine phytoplasmas. The species-specific primers were designed based on ribosomal protein, putative preprotein translocase Y, immunodominant protein, elongation factor TU, chaperonin protein and the 16S rRNA genes of 'Candidatus (Ca.) Phytoplasma' species. Three main primer sets were prepared from ten designed primer pairs to limit nonspecific amplification as much as possible. The multiplex PCR assay using the three primer sets successfully amplified the correct conserved genes for each 'Ca. Phytoplasma' species. In addition, ten important 'Ca. Phytoplasma' species could be easily determined by recognizing band patterns specific for each phytoplasma species from three primer sets. Moreover, a high sensitivity of multiplex PCR for each primer set was observed for samples containing a low DNA concentration (10 ng/${\mu}l$). This study provides the useful multiplex PCR assay as a convenient method to detect the presence of ten important quarantine phytoplasmas in Korea.

Detection of Fusarium verticillioides Contaminated in Corn Using a New Species-specific Primer (종 특이 primer를 이용한 옥수수 오염 Fusarium verticillioides의 PCR 검출)

  • Kang, Mi-Ran;Kim, Ji-Hye;Lee, Seung-Ho;Ryu, Jae-Gee;Lee, Theresa;Yun, Sung-Hwan
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.369-375
    • /
    • 2011
  • Fusarium verticillioides (teleomorph: Gibberella moniliformis), a member of the Gibberellea fujikuroi species complex, causes rots of corn stalks and ears, and produces a group of mycotoxins known as fumonisins that are harmful to animals and humans. Here, we focus on the development of a species-specific PCR primer set for differentiating F. verticillioides from other fumonisin-producing Fusarium species belonging to the species complex, such as F. proliferatum, F. fujikuroi, and F. subglutinans that are frequently associated with corn. The specific primers (RVERT1 and RVERT2) derived from the nucleotide sequences of RNA polymerase II beta subunit (RPB2) gene amplified a 208 bp-DNA fragment from only F. verticillioides isolates among the potential fumonisin-producing species examined; all of these isolates were shown to carry FUM1 required for fumonisin biosynthesis. The PCR detection limit using this specific primer set was approximately 0.125 pg/${\mu}l$ genomic DNA of F. verticillioides. In addition, the F. verticillioides-specfic fragment was successfully amplified from genomic DNAs of corn samples contaminated with Fusarium spp. This primer set would provide a useful tool for the detection and differentiation of potential fumonisin-producing F. verticillioides strains in cereal samples.

Specific and Sensitive Detection of Venturia nashicola, the Scab Fungus of Asian Pears, by Nested PCR

  • Koh, Hyun Seok;Sohn, San Ho;Lee, Young Sun;Koh, Young Jin;Song, Jang Hoon;Jung, Jae Sung
    • The Plant Pathology Journal
    • /
    • v.29 no.4
    • /
    • pp.357-363
    • /
    • 2013
  • The fungus Venturia nashicola is the causal agent of scab on Asian pears. For the rapid and reliable identification as well as sensitive detection of V. nashicola, a PCR-based technique was developed. DNA fingerprints of three closely related species, V. nashicola, V. pirina, and V. inaequalis, were obtained by random amplified polymorphic DNA (RAPD) analysis. Two RAPD markers specific to V. nashicola were identified by PCR, after which two pairs of sequence characterized amplified region (SCAR) primers were designed from the nucleotide sequences of the markers. The SCAR primer pairs, designated as D12F/D12R and E11F/E11R, amplified 535-bp and 525-bp DNA fragments, respectively, only from genomic DNA of V. nashicola. The specificity of the primer sets was tested on strains representing three species of Venturia and 20 fungal plant pathogens. The nested PCR primer pair specific to V. nashicola was developed based on the sequence of the species-specific 525-bp DNA fragment amplified by primer set E11F/E11R. The internal primer pair Na11F/Na11R amplified a 235-bp fragment from V. nashicola, but not from any other fungal species tested. The nested PCR assay was sensitive enough to detect the specific fragment in 50 fg of V. nashicola DNA.

A STUDY ON THE IDENTIFICATION OF Porphyromonas endodontalis BY PCR USING SPECIES SPECIFIC PRIMERS FOR THE 16S rDNA (16S rDNA sequence에 대한 종특이성 primer를 이용한 중합효소연쇄반응증폭에 의한 Porphyromonas endodontalis의 동정에 관한 연구)

  • Eom, Seung-Hee;Lim, Sung-Sam;Bae, Kwang-Shik
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.13-25
    • /
    • 1999
  • P. endodontalis which was known to be associated with the infected root canals and periapical lesions is very difficult to detect by culture methods or traditional methods. Detection of bacteria using polymerase chain reaction(PCR) for 16S ribosomal DNA(rDNA) is fast, simple, and accurate with relatively small amount of target cells. 16S rDNA consist of conserved regions those are same to all species, and variable regions which represent species specificity. The 16S rDNA sequences of P. endodontalis and P. gingivalis were aligned and two highly variable regions were selected as a pair of species specific oligonucleotide primers for P. endodontalis. And then the pair of primers for PCR amplification was synthesized to identify P. endodontalis. The sequences of the species specific primers for the 16S rDNA of P. endodontalis were as follows ; sense primer[endo1]: 5'-CTATATTCTTCTTTCTCCGCATGGAGGAGG-3' antisense primer[endo2]: 5'-GCATACCTTCGGTCTCCTCTAGCATAT-3' In this study, for the identification of P. endodontalis without culture from the mixed clinical samples, PCR was done with species specific primers for the 16S rDNA sequences of P. endodontalis. The results were as follows : 1. The species specificity of the primers for the 16S rDNA of P. endodntalis was determined by the PCR methods. About 490bp amplicon which was specific only for P. endodntalis was produced with P. endodontalis. No amplicon was produced by PCR with other strains similar to P. endodontalis. 2. The synthesized species specific primers reacted with conventionally identified P. endodontalis which we have in conservative dentistry laboratory. 3. The identification of P. endodontalis using PCR technique with samples collected from infected root canals or periapical lesions was more sensitive than that of culture methods. 4. Seven samples revealed including P. endodontalis by PCR technique. Five of them were related with pains, two of them with sinus tract, three of them with foul odor, and three of them with purulent drainage. P. endodontalis was shown to have great relation with pains.

  • PDF

Application of Environmental DNA for Monitoring of Freshwater Fish in Korea (환경유전자의 국내 담수어류 모니터링 적용 연구)

  • Kim, Jeong-Hui;Jo, Hyunbin;Chang, Min-Ho;Woo, Seung-Hyun;Cho, Youngho;Yoon, Ju-Duk
    • Korean Journal of Ecology and Environment
    • /
    • v.53 no.1
    • /
    • pp.63-72
    • /
    • 2020
  • In this study, to discuss on the applicability of eDNA as a new method to investigate fish diversity at streams, we applied eDNA at 4 streams (Geum River, Ji Stream, Hwangji Stream, Seomjin River), where endangered species are inhabits, with conventional survey (cast net and kick net). The average (±standard deviation) number of species investigated by eDNA were 19 species (±4.4), and it was relatively higher than average of conventional survey, 10 species (±4.8). Most of case, in this study, eDNA was more efficient than conventional survey. However, there were errors on species identification of Korean endemic species and aliied species from eDNA, and it seems the universal primer (MiFish primer set) is not suitable for them. Furthermore, some of endangered species, caught by conventional method, was not detected by eDNA. As the present universal primer is not suitable for identify the every freshwater fish species in Korea, the complementing or development of universal primer is needed, and the eDNA application after species specific marker development for detecting specific species like endangered species should be considered. In conclusion, if the manual for field survey method by eDNA is developed, we expect applicability enlargement for water ecosystem survey.

Development of Species-specific Primers for Rapid Detection of Phellinus linteus and P. baumii

  • Kim, Mun-Ok;Kim, Gi-Young;Nam, Byung-Hyouk;Jin, Cheng-Yun;Lee, Ki-Won;Park, Jae-Min;Lee, Sang-Joon;Lee, Jae-Dong
    • Mycobiology
    • /
    • v.33 no.2
    • /
    • pp.104-108
    • /
    • 2005
  • Genus Phellinus taxonomically belongs to Aphyllophorales and some species of this genus have been used as a medicinal ingredients and Indian folk medicines. Especially, P. linteus and morphological-related species are well-known medicinal fungi that have various biological activities such as humoral and cell-mediated, anti-mutagenic, and anti-cancer activities. However, little is known about the rapid detection for complex Phellinus species. Therefore, this study was carried out to develop specific primers for the rapid detection of P. linteus and other related species. Designing the species-specific primers was done based on internal transcribed spacer sequence data. Each primer set detected specifically P. linteus (PL2/PL5R) and P. baumii (PB1/PB4R). These primer sets could be useful for the rapid detection of specific-species among unidentified Phellinus species. Moreover, restriction fragment length polymorphism analysis of the ITS region with HaeIII was also useful for clarifying the relationship between each 5 Phellinus species.

Development of a Multiplex PCR Assay for Rapid Identification of Larimichthys polyactis, L. crocea, Atrobucca nibe, and Pseudotolithus elongates (다중 PCR 분석법을 이용한 참조기, 부세, 흑조기 및 긴가이석태의 신속한 종판별법 개발)

  • Noh, Eun Soo;Lee, Mi-Nan;Kim, Eun-Mi;Park, Jung Youn;Noh, Jae Koo;An, Cheul Min;Kang, Jung-Ha
    • Journal of Life Science
    • /
    • v.27 no.7
    • /
    • pp.746-753
    • /
    • 2017
  • In order to rapidly identify four drums species, Larimichthys polyactis, L. crocea, Atrobucca nibe, and Pseudotolithus elongates, a highly efficient and quick method has been developed using multiplex polymerase chain reaction (PCR) with species-specific primers. Around 1.4 kbp of the mitochondrial COI gene sequences from the four drums species were aligned, and species-specific forward primers were designed, based on the single nucleotide polymorphism (SNP). The optimal conditions for PCR amplification were selected through cross-reactivity, using a gradient PCR method. The PCR results demonstrated species-specific amplification for each species at annealing temperatures between 50 and $62^{\circ}C$. Multiplex species-specific PCR (MSS-PCR) amplification reactions with four pairs of primers were performed for sixteen specimens of each species. MSS-PCR lead to a species-specific amplification of a 1,540 bp fragment in L. polyactis, 1,013 bp in A. nibe, 474 bp in L. crocea, and 182 bp in P. elongates, respectively. The four different sizes of each PCR product can be quickly and easily detected by single gel electrophoresis. The sensitivity of the MSS-PCR of the DNA was up to $0.1ng/{\mu}l$ as a starting concentration for the four different species tested. These results suggest that MSS-PCR, with species-specific primers based on SNP, can be a powerful tool in the rapid identification of the four drums species, L. polyactis, L. crocea, A. nibe, and P. elongates.

Identification and Detection of Streptococcus anginosus Using Species-Specific 16S rDNA Primers

  • Cho, Ji-Sun;Yoo, So-Young;Kim, Hwa-Sook;Hwang, Ho-Keel;Min, Jeong-Beom;Kim, Byung-Hoon;Baek, Dong-Heon;Shin, Hwan-Seon;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.31 no.1
    • /
    • pp.11-14
    • /
    • 2006
  • This study was undertaken to develop PCR primers for the identification and detection of Streptococcus anginosus using species-specific forward and reverse primers. These primers targeted the variable regions of the 16S ribosomal RNA coding gene(rDNA). The primer specificity was tested against 12 S. anginosus strains and 6 different species(10 strains) of oral bacteria. The primer sensitivity was determined by testing serial dilutions of the purified genomic DNA of S. anginosus ATCC $33397^T$. The data showed that species-specific amplicons were obtained from all the S. anginosus strains tested, but not in the six other species. The PCR could detect as little as 0.4pg of the chromosomal DNA from S. anginosus. This suggests that the PCR primers are highly sensitive and applicable to the detection and identification of S. anginosus.

A New Approach Using the SYBR Green-Based Real-Time PCR Method for Detection of Soft Rot Pectobacterium odoriferum Associated with Kimchi Cabbage

  • Yong Ju, Jin;Dawon, Jo;Soon-Wo, Kwon;Samnyu, Jee;Jeong-Seon, Kim;Jegadeesh, Raman;Soo-Jin, Kim
    • The Plant Pathology Journal
    • /
    • v.38 no.6
    • /
    • pp.656-664
    • /
    • 2022
  • Pectobacterium odoriferum is the primary causative agent in Kimchi cabbage soft-rot diseases. The pathogenic bacteria Pectobacterium genera are responsible for significant yield losses in crops. However, P. odoriferum shares a vast range of hosts with P. carotovorum, P. versatile, and P. brasiliense, and has similar biochemical, phenotypic, and genetic characteristics to these species. Therefore, it is essential to develop a P. odoriferumspecific diagnostic method for soft-rot disease because of the complicated diagnostic process and management as described above. Therefore, in this study, to select P. odoriferum-specific genes, species-specific genes were selected using the data of the P. odoriferum JK2.1 whole genome and similar bacterial species registered with NCBI. Thereafter, the specificity of the selected gene was tested through blast analysis. We identified novel species-specific genes to detect and quantify targeted P. odoriferum and designed specific primer sets targeting HAD family hydrolases. It was confirmed that the selected primer set formed a specific amplicon of 360 bp only in the DNA of P. odoriferum using 29 Pectobacterium species and related species. Furthermore, the population density of P. odoriferum can be estimated without genomic DNA extraction through SYBR Green-based real-time quantitative PCR using a primer set in plants. As a result, the newly developed diagnostic method enables rapid and accurate diagnosis and continuous monitoring of soft-rot disease in Kimchi cabbage without additional procedures from the plant tissue.