• Title/Summary/Keyword: species-specific genes

Search Result 272, Processing Time 0.026 seconds

Platform of Hot Pepper Defense Genomics: Isolation of Pathogen Responsive Genes in Hot Pepper (Capsicum annuum L.) Non-Host Resistance Against Soybean Pustule Pathogen (Xanthomonas axonopodis pv. glycines)

  • Lee, Sang-Hyeob;Park, Do-Il
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • Host resistance is usually parasite-specific and is restricted to a particular pathogen races, and commonly is expressed against specific pathogen genotypes. In contrast, resistance shown by an entire plant species to a species of pathogen is known as non-host resistance. Therefore, non-host resistance is the more common and broad form of disease resistance exhibited by plants. As a first step to understand the mechanism of non-host plant defense, expressed sequence tags (EST) were generated from a hot pepper leaf cDNA library constructed from combined leaves collected at different time points after inoculation with non-host soybean pustule pathogen (Xanthomonas axonopodis pv. Glycines; Xag). To increase gene diversity, ESTs were also generated from cDNA libraries constructed from anthers and flower buds. Among a total of 10,061 ESTs, 8,525 were of sufficient quality to analyze further. Clustering analysis revealed that 55 % of all ESTs (4685) occurred only once. BLASTX analysis revealed that 74% of the ESTs had significant sequence similarity to known proteins present in the NCBI nr database. In addition, 1,265 ESTs were tentatively identified as being full-length cDNAs. Functional classification of the ESTs derived from pathogen-infected pepper leaves revealed that about 25% were disease- or defense-related genes. Furthermore, 323 (7%) ESTs were tentatively identified as being unique to hot pepper. This study represents the first analysis of sequence data from the hot pepper plant species. Although we focused on genes related to the plant defense response, our data will be useful for future comparative studies.

Gene structure and expression characteristics of liver-expressed antimicrobial peptide-2 isoforms in mud loach (Misgurnus mizolepis, Cypriniformes)

  • Lee, Sang Yoon;Nam, Yoon Kwon
    • Fisheries and Aquatic Sciences
    • /
    • v.20 no.12
    • /
    • pp.31.1-31.11
    • /
    • 2017
  • Background: Liver-expressed antimicrobial peptide-2 (LEAP-2) is an important component of innate immune system in teleosts. In order to understand isoform-specific involvement and regulation of LEAP-2 genes in mud loach (Misgurnus mizolepis, Cypriniformes), a commercially important food fish, this study was aimed to characterize gene structure and expression characteristics of two paralog LEAP-2 isoforms. Results: Mud loach LEAP-2 isoforms (LEAP-2A and LEAP-2B) showed conserved features in the core structure of mature peptides characterized by four Cys residues to form two disulfide bonds. The two paralog isoforms represented a tripartite genomic organization, known as a common structure of vertebrate LEAP-2 genes. Bioinformatic analysis predicted various transcription factor binding motifs in the 5'-flanking regions of mud loach LEAP-2 genes with regard to development and immune response. Mud loach LEAP-2A and LEAP-2B isoforms exhibited different tissue expression patterns and were developmentally regulated. Both isoforms are rapidly modulated toward upregulation during bacterial challenge in an isoform and/or tissue-dependent fashion. Conclusion: Both LEAP-2 isoforms play protective roles not only in embryonic and larval development but also in early immune response to bacterial invasion in mud loach. The regulation pattern of the two isoform genes under basal and stimulated conditions would be isoform-specific, suggestive of a certain degree of functional divergence between isoforms in innate immune system in this species.

Construction of a full-length cDNA library from Typha laxmanni Lepech. and T. angustifolia L. from an EST dataset

  • Im, Subin;Kim, Ho-Il;Kim, Dasom;Oh, Sang Heon;Kim, Yoon-Young;Ku, Ja Hyeong;Lim, Yong Pyo
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.583-590
    • /
    • 2018
  • Genus Typha L. (Typhaceae; Cattail in common) is one of the hydrophytic plants found in semi-aquatic regions. About nine to 18 species of the genus exist all over the world. In Korea, the most commonly found cattail species are T. laxmanni and T. angustifolia. The aim of this study was to prepare a cDNA library and sequences and analyze expressed sequence tags (ESTs) from these species, T. laxmanni and T. angustifolia. In the case of T. laxmanni, we observed that 715 out of 742 ESTs had high quality sequences, whereas the remaining 27 ESTs were low quality sequences. In this study, we identified 77 contigs, 393 unassembled clones and 65.7% singletons. Furthermore, in the case of T. angustifolia, we recorded 992 high quality EST sequences, and by excluding 28 low quality sequences from among them, we retrieved 120 contigs, 348 unassembled clones and 48.9% singletons. The basic local alignment search tool (BLAST) and Kyoto encyclopedia of genes and genomes (KEGG) database results enabled us to identify the functional categories, i.e., molecular function (16.5%), biological process (22.2%) and cellular components (61.3%). In addition, between these two species, the no hits and anonymous genes were 4.2% and 11.7% and 6.2% and 11.2% in T. laxmanni and T. angustifolia, respectively, based on the BLAST results. The study concluded that they have certain species-specific genes. Hence, the results of this study on these two species could be a valuable resource for further studies.

A Duplex PCR Assay for Differentiating Native Common Buckwheat and Tartarian Buckwheat, and Its Application for the Rapid Detection of Buckwheat Ingredients in Food

  • Jeon, Young-Jun;Hong, Kwang-Won
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.357-361
    • /
    • 2008
  • One of the major allergenic proteins in common buckwheat (Fagopyrum elculentum) was found to be a BW10KD. In this work, allergenic BW10KD genomic DNAs from the native common buckwheat 'Pyeongchang' and Tartarian buckwheat 'Clfa47' were cloned by polymerase chain reaction (PCR), and their nucleotide sequences were determined. In addition, a novel PCR assay targeting the allergenic BW10KD gene was developed to detect and differentiate both buckwheat species in food. The nucleotide sequences of the BW10KD genomic DNA from 'Pyeongchang' and 'Clfa47' were 94% identical. Base differences in the nucleotide sequences of the BW10KD genes are probably useful as a molecular marker for species-specific identification. The 'Pyeongchang'-specific primer set 154PF/400PR and the 'Clfa47'-specific primer set 154DF/253DR generated 247 and 100 bp fragments in singleplex PCR, respectively. A duplex PCR assay with 2 species-specific primer sets simultaneously differentiated the 'Pyeongchang' and 'Clfa47' in a single reaction. The PCR assay also successfully allowed for the rapid detection of buckwheat ingredients in foods.

Testis-specific transcripts in the chicken

  • Kim, Duk-Kyung
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2005.11a
    • /
    • pp.53-59
    • /
    • 2005
  • Sequences of candidate chicken testis-specific genes were analyzed in order to develop a resource for functional genomic studies of the testis and male germ cells. Tentative consensus sequences (TCs) containing ESTs expressed in testis libraries only were selected from the TIGR Gallus gallus Gene Index, resulting in a total of 292 TCs. The transcriptional expression of these genes were evaluated in a variety of chicken tissues, including testis and ovary, Of the panel of 292 TCs, 110 were expressed in a testis-specific manner. The correlation between the number of ESTs assembled into each TC and the number of testis-specific TCs was not significant. Annotation of the TCs using the Gene Ontology database terms showed that the proportion of testis-specific TCs that were classified as having catalytic activity (within the Molecular Function branch) was larger than the proportion of total chicken TCs classified in the same way. Our results might facilitate the investigation of testis-specific genes and their functional analysis in the chicken as well as in other avian species.

  • PDF

Capillary Gel Electrophoretic Analysis of Cattle Breeds Based on Difference of DNA Mobility of Microsatellite Markers

  • Lee, Mi-Ji;Yoon, Du-Hak;Jeon, Jin-Tae;Eo, Seong-Kug;Kang, Seong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.11
    • /
    • pp.2655-2660
    • /
    • 2009
  • A breed of cattle, i.e., Korean cattle (Hanwoo), was identified based on the DNA mobilities of their microsatellites (MSs) by capillary gel electrophoresis (CGE) with a laser-induced fluorescence (LIF) detector. The MS markers were used for the accurate identification of species-specific genes. The DNA mobilities of the MS markers of Hanwoo and Holstein were measured using a CGE system with a fused-silica capillary (inner diameter of 75 ${\mu}m$, outer diameter of 365 ${\mu}m$, and total length of 50 cm). The capillary was dynamically coated with 1.0% (w/v) polyvinylpyrrolidone ($M_r$ = 1,000,000) and then filled with a mixture of 1.3% (w/v) poly(ethylene oxide) ($M_r$ = 600,000) and 1.9% (w/v) poly(ethylene oxide) (Mr = 8,000,000) as a sieving gel matrix. The species-specific genes of Hanwoo and Holstein were clearly distinguished within 33 min. This CGE assay technique is expected to be a useful analytical method for the fast and accurate identification of breeds of cattle.

Reevaluation of the Change of Leuconostoc Species and Lactobacillus plantarum by PCR During Kimchi Fermentation

  • Choi, Jae-Yeon;Kim, Min-Kyun;Lee, Jong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.166-171
    • /
    • 2002
  • The genus Leuconostoc is generally recognized as a favorable microorganism associated with a good taste of Kimchi and Lactobacillus plantarum is responsible for the overripening and acidification of Kimchi. A rapid and reliable PCR-based method to monitor the change of these lactic acid bacterial populations during Kimchi fermentation was attempted. A Leuconostoc-specific primer set was chosen from the conserved sequences of 16S rRNA genes among Leuconostoc species. The Lb. plantarum-specific primer set was the internal segments of a Lb. plantarum-specific probe which was isolated after randomly amplified polymorphic DNA (RAPD) analysis and tested for identification. The specificity of this protocol was examined in DNA samples isolated from a single strain. In agarose gel, as little as 10 pg of template DNA could be used to visualize the PCR products, and quantitative determination was possible at the levels of 10 pg to 100 ng template DNA. For the semi-quantitative determination of microbial changes during Kimchi fermentation, total DNAs from the 2 h-cultured microflora of Kimchi were extracted for 16 days and equal amounts of DNA templates were used for PCR. The intensities of DNA bands obtained from PCR using Leuconostoc-specific and Lb. plantarum-specific primer sets marked a dramatic contrast at the 1 ng and 100 ng template DNA levels during Kimchi fermentation, respectively. As the fermentation proceeded, the intensity of the band for Leuconostoc species increased sharply until the 5th day and the levels was maintained until the 11 th day. The sharp increase for Lb. plantarum occurred after 11 days with the decrease of Leuconostoc species. The results of this study indicate that Leuconostoc species were the major microorganisms at the beginning of Kimchi fermentation and reach their highest population during the optimum ripening period of Kimchi.

At Death's Door: Alternaria Pathogenicity Mechanisms

  • Lawrence, Christopher B.;Mitchell, Thomas K.;Craven, Kelly D.;Cho, Yang-Rae;Cramer, Robert A.;Kim, Kwang-Hyung
    • The Plant Pathology Journal
    • /
    • v.24 no.2
    • /
    • pp.101-111
    • /
    • 2008
  • The fungal genus Alternaria is comprised of many saprophytic and endophytic species, but is most well known as containing many notoriously destructive plant pathogens. There are over 4,000 Alternaria/host associations recorded in the USDA Fungal Host Index ranking the genus 10th among nearly 2,000 fungal genera based on the total number of host records. While few Alternaria species appear to have a sexual stage to their life cycles, the majority lack sexuality altogether. Many pathogenic species of Alternaria are prolific toxin producers, which facilitates their necrotrophic lifestyle. Necrotrophs must kill host cells prior to colonization, and thus these toxins are secreted to facilitate host cell death often by triggering genetically programmed apoptotic pathways or by directly causing cell damage resulting in necrosis. While many species of Alternaria produce toxins with rather broad host ranges, a closely-related group of agronomically important Alternaria species produce selective toxins with a very narrow range often to the cultivar level. Genes that code for and direct the biosynthesis of these host-specific toxins for the Alternaria alternata sensu lato lineages are often contained on small, mostly conditionally dispensable, chromosomes. Besides the role of toxins in Alternaria pathogenesis, relatively few genes and/or gene products have been identified that contribute to or are required for pathogenicity. Recently, the completion of the A. brassicicola genome sequencing project has facilitated the examination of a substantial subset of genes for their role in pathogenicity. In this review, we will highlight the role of toxins in Alternaria pathogenesis and the use of A. brassicicola as a model representative for basic virulence studies for the genus as a whole. The current status of these research efforts will be discussed.

Listeria monocytogenes Serovar 4a is a Possible Evolutionary Intermediate Between L. monocytogenes Serovars 1/2a and 4b and L. innocua

  • Chen, Jianshun;Jiang, Lingli;Chen, Xueyan;Luo, Xiaokai;Chen, Yang;Yu, Ying;Tian, Guoming;Liu, Dongyou;Fang, Weihuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.3
    • /
    • pp.238-249
    • /
    • 2009
  • The genus Listeria consists of six closely related species and forms three phylogenetic groups: L. monocytogenes-L. innocua, L. ivanovii-L. seeligeri-L. welshimeri, and L. grayi. In this report, we attempted to examine the evolutionary relationship in the L. monocytogenes-L. innocua group by probing the nucleotide sequences of 23S rRNA and 16S rRNA, and the gene clusters lmo0029-lmo0042, ascB-dapE, rplS-infC, and prs-ldh in L. monocytogenes serovars 1/2a, 4a, and 4b, and L. innocua. Additionally, we assessed the status of L. monocytogenes-specific inlA and inlB genes and 10 L. innocua-specific genes in these species/serovars, together with phenotypic characterization by using in vivo and in vitro procedures. The results indicate that L. monocytogenes serovar 4a strains are genetically similar to L. innocua in the lmo0035-lmo0042, ascB-dapE, and rplS-infC regions and also possess L. innocua-specific genes lin0372 and lin1073. Furthermore, both L. monocytogenes serovar 4a and L. innocua exhibit impaired intercellular spread ability and negligible pathogenicity in mouse model. On the other hand, despite resembling L. monocytogenes serovars 1/2a and 4b in having a nearly identical virulence gene cluster, and inlA and inlB genes, these serovar 4a strains differ from serovars 1/2a and 4b by harboring notably altered actA and plcB genes, displaying strong phospholipase activity and subdued in vivo and in vitro virulence. Thus, by possessing many genes common to L. monocytogenes serovars 1/2a and 4b, and sharing many similar gene deletions with L. innocua, L. monocytogenes serovar 4a represents a possible evolutionary intermediate between L. monocytogenes serovars 1/2a and 4b and L. innocua.

Acyl-Homoserine lactone Quorum Sensing in Bactreria

  • Greenberg, E.Peter
    • Journal of Microbiology
    • /
    • v.38 no.3
    • /
    • pp.117-121
    • /
    • 2000
  • Recent advances in studies of bacterial gene expression and light microscopy show that cell-to cell communication and communication and community behavior are the rule rather than the exception. One type of cell-cell communication, quorum sensing in Gram-negative bacteria involves acyl-homoserine lactone signals. This type of quorum sension represents a dedicated communication system that enables a given species to sense when it has reached a critical population density. and to respond by activating expression of specific genes. The LuxR and LuxI proteins of Vibrio fisheri are the founding members of the acyl-homoserine lactone quorum sensing signal receptor and signal generator families of proteins. Acyl-homeserine lactone signaling in Pseudomonas aeruginosa is one model for the relationship between quorum sensing community behavior, and virulence. In the P. aeruginosa model. quorum sensing is required for normal biofilm maturation and virulence. There are multiple quorum-sensing circuits that control the expression of dozens of specific genes in P. aeruginosa.

  • PDF