Browse > Article
http://dx.doi.org/10.4014/jmb.0805.304

Listeria monocytogenes Serovar 4a is a Possible Evolutionary Intermediate Between L. monocytogenes Serovars 1/2a and 4b and L. innocua  

Chen, Jianshun (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine)
Jiang, Lingli (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine)
Chen, Xueyan (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine)
Luo, Xiaokai (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine)
Chen, Yang (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine)
Yu, Ying (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine)
Tian, Guoming (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine)
Liu, Dongyou (College of Veterinary Medicine, Mississippi State University)
Fang, Weihuan (Zhejiang University Institute of Preventive Veterinary Medicine, and Zhejiang Provincial Key Laboratory of Prevent Veterinary Medicine)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.3, 2009 , pp. 238-249 More about this Journal
Abstract
The genus Listeria consists of six closely related species and forms three phylogenetic groups: L. monocytogenes-L. innocua, L. ivanovii-L. seeligeri-L. welshimeri, and L. grayi. In this report, we attempted to examine the evolutionary relationship in the L. monocytogenes-L. innocua group by probing the nucleotide sequences of 23S rRNA and 16S rRNA, and the gene clusters lmo0029-lmo0042, ascB-dapE, rplS-infC, and prs-ldh in L. monocytogenes serovars 1/2a, 4a, and 4b, and L. innocua. Additionally, we assessed the status of L. monocytogenes-specific inlA and inlB genes and 10 L. innocua-specific genes in these species/serovars, together with phenotypic characterization by using in vivo and in vitro procedures. The results indicate that L. monocytogenes serovar 4a strains are genetically similar to L. innocua in the lmo0035-lmo0042, ascB-dapE, and rplS-infC regions and also possess L. innocua-specific genes lin0372 and lin1073. Furthermore, both L. monocytogenes serovar 4a and L. innocua exhibit impaired intercellular spread ability and negligible pathogenicity in mouse model. On the other hand, despite resembling L. monocytogenes serovars 1/2a and 4b in having a nearly identical virulence gene cluster, and inlA and inlB genes, these serovar 4a strains differ from serovars 1/2a and 4b by harboring notably altered actA and plcB genes, displaying strong phospholipase activity and subdued in vivo and in vitro virulence. Thus, by possessing many genes common to L. monocytogenes serovars 1/2a and 4b, and sharing many similar gene deletions with L. innocua, L. monocytogenes serovar 4a represents a possible evolutionary intermediate between L. monocytogenes serovars 1/2a and 4b and L. innocua.
Keywords
Listeria; serovar; phylogeny; evolution; pathogenicity;
Citations & Related Records

Times Cited By Web Of Science : 11  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Brosch, R., J. Chen, and J. B. Luchansky. 1994. Pulsed-field fingerprinting of listeriae: Identification of genomic divisions for Listeria monocytogenes and their correlation with serovar. Appl. Environ. Microbiol. 60: 2584-2592   PUBMED   ScienceOn
2 Buchrieser, C. and C. Rusniok, The Listeria Consortium, F. Kunst, P. Cossart, and P. Glaser. 2003. Comparison of the genomes sequences of Listeria monocytogenes and Listeria innocua: Clues for evolution and pathogenicity. FEMS Immunol. Med. Microbiol. 35: 207-213   DOI   ScienceOn
3 Buchrieser, C. 2007. Biodiversity of the species Listeria monocytogenes and the genus Listeria. Microbes Infect. 9:1147-1155   DOI   ScienceOn
4 Chen, J., L. Jiang, and W. Fang, 2007. Virulence determinants and its evolution of the genus Listeria. Acta Microbiol. Sin. 47:738-742
5 Doumith, M., C. Cazalet, N. Simoes, L. Frangeul, C. Jacquet, F. Kunst, et al. 2004. New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays. Infect. Immun. 72: 1072-1083   DOI   ScienceOn
6 Jiang, L., J. Chen, J. Xu, X. Zhang, S. Wang, H. Zhao, K. Vongxay, and W. Fang. 2008. Virulence characterization and genotypic analyses of Listeria monocytogenes isolates from foodand processing environments in eastern China. Int. J. FoodMicrobiol. 121: 53-59   DOI   ScienceOn
7 Liu, D., M. L. Lawrence, M. Wiedmann, L. Gorski, R. E. Mandrell, A. J. Ainsworth, and F. W. Austin. 2006. Listeria monocytogenes subgroups IIIA, IIIB and IIIC delineate genetically distinct populations with varied virulence potential. J. Clin. Microbiol. 44: 4229-4233   DOI   ScienceOn
8 Nelson, K. E., D. E. Fouts, E. F. Mongodin, J. Ravel, R. T. DeBoy, J. F. Kolonay, et al. 2004. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res. 32:2386-2395   DOI   ScienceOn
9 Zeng, H., X. Zhang, Z. Sun, and W. Fang. 2006. Multiplex PCR identification of Listeria monocytogenes isolates from milk and milk-processing environments. J. Food Sci. Agric. 86: 367-371   DOI   ScienceOn
10 Volokhov, D. V., J. George, C. Anderson, R. E. Duvall, and A. D. Hitchins. 2006. Discovery of natural atypical nonhemolytic Listeria seeligeri isolates. Appl. Environ. Microbiol. 72: 2439-2448   DOI   ScienceOn
11 Geoffroy, C., J. Raveneau, J. L. Beretti, A. Lecroisey, J. A. Vazquez-Boland, J. E. Alouf, and P. Berche. 1991. Purification and characterization of an extracellular 29-kilodalton phospholipase C from Listeria monocytogenes. Infect. Immun. 59: 2382-2388   PUBMED
12 Hain, T., C. Steinweg, and T. Chakraborty. 2006. Comparative and functional genomics of Listeria spp. J. Biotechol. 126: 37-51   DOI   ScienceOn
13 Sallen, B., A. Rajoharison, S. Desvarenne, F. Quinn, and C. Mabilat. 1996. Comparative analysis of 16S rRNA and 23S rRNA sequences of Listeria species. Int. J. Syst. Bacteriol. 46: 669-674   DOI   ScienceOn
14 Geoffroy, C., J. L. Gaillard, J. E. Alouf, and P. Berche. 1989. Production of thiol-dependent haemolysins by Listeria monocytogenes and related species. J. Gen. Microbiol. 135:481-487   PUBMED   ScienceOn
15 Goulet, V., C. Jacquet, P. Martin, V. Vaillant, E. Laurent, and H. de Valk. 2006. Surveillance of human listeriosis in France, 2001-2003. Euro. Surveill. 11: 79-81   PUBMED
16 Sokolovic, Z., S. Schuller, J. Bohne, A. Baur, U. Rdest, C. Dickneite, T. Nichterlein, and W. Goebel. 1996. Differences in virulence and in expression of PrfA and PrfA-regulated virulence genes of Listeria monocytogenes strains belonging to serogroup 4. Infect. Immun. 64: 4008-4019   PUBMED   ScienceOn
17 Jiang, L., J. Xu, N. Chen, J. Shuai, and W. Fang. 2006. Virulence phenotyping and molecular characterization of a low-pathogenic Listeria monocytogenes from cow's milk. Acta Biochim. Biophys. Sin. 38: 262-270   DOI   ScienceOn
18 Liu, D., M. L. Lawrence, A. J. Ainsworth, and F. W. Austin. 2007. A multiplex PCR assay for species- and virulence-specific determination of Listeria monocytogenes virulence. J. Microbiol. Methods 71: 133-140   DOI   ScienceOn
19 Mahillon, J. and M. Chandler. 1998. Insertion sequence. Microbiol. Mol. Biol. Rev. 62: 725-774   PUBMED   ScienceOn
20 Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4:Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599   DOI   ScienceOn
21 Moriishi, K., M. Terao, M. Kuora, and S. Inoue. 1998. Sequence analysis of the actA gene of Listeria monocytogenes isolated from human. Microbiol. Immunol. 42: 129-132   DOI   PUBMED   ScienceOn
22 Liu, D., M. L. Lawrence, and A. D. Hitchins. 2008. Molecular characterization of Listeria monocytogenes strains harboring L. innocua putative transcriptional regulator gene lin0464. J. Rapid Meth. Aut. Mic. [In Press]
23 Hain, T., C. Steinweg, C. T. Kuenne, A. Billion, R. Ghai, S. S. Chatterjee, et al. 2006. Whole-genome sequence of Listeria welshimeri reveals common steps in genome reduction with Listeria innocua as compared to Listeria monocytogenes. J. Bacteriol. 188: 7405-7415   DOI   ScienceOn
24 Takamatsu, D., M. Osaki, and T. Sekizaki. 2002. Evidence for lateral transfer of the suilysin gene region of Streptococcus suis. J. Bacteriol. 184: 2050-2057   DOI   ScienceOn
25 Volokhov, D. V., S. Duperrier, A. A. Neverov, J. George, C. Buchrieser, and A. D. Hitchins. 2007. Internalin gene in natural atypical hemolytic Listeria innocua strains suggests descent from L. monocytogenes. Appl. Environ. Microbiol. 73: 1928-1939   DOI   ScienceOn
26 Gouin, E., J. Mengaud, and P. Cossart. 1994. The virulence gene cluster of Listeria monocytogenes is also present in Listeria ivanovii, an animal pathogen, and Listeria seeligeri, a nonpathogenic species. Infect. Immun. 62: 3550-3553   PUBMED   ScienceOn
27 Liu, D. 2004. Listeria monocytogenes: Comparative interpretation of mouse virulence assay. FEMS. Microbiol. Lett. 233: 159-164   DOI   PUBMED   ScienceOn
28 Roche, S. M., P. Gracieux, E. Milohanic, I. Albert, I. Virlogeux-Pavant, S. Temon, et al. 2005. Investigation of specific substitutions in virulence genes characterizing phenotypic groups of low-virulence field strains of Listeria monocytogenes. Appl. Environ. Microbiol. 71: 6039-6048   DOI   ScienceOn
29 Schmid, M. W., E. Y. W. Ng, R. Lampidis, M. Emmerth, M. Walcher, J. Kreft, W. Goebel, M. Wanger, and K. Schleifer. 2005. Evolutionary history of the genus Listeria and its virulence genes. Syst. Appl. Microbiol. 28: 1-18   DOI   ScienceOn
30 Ermolaeva, S., T. Karpova, S. Novella, M. Wagner, M. Scortti, I. Tartakovskii, and J. A. Vazquez-Boland. 2003. A simple method for the differentiation of Listeria monocytogenes on induction of lecithinase activity by charcoal. Int. J. Food Microbiol. 82: 87-94   DOI   ScienceOn
31 Sabet, C., M. Lecuit, D. Cabanes, P. Cossart, and H. Biene. 2005. LPXTG protein InlJ, a newly identified internalin involved in Listeria monocytogenes virulence. Infect. Immun. 73: 6912-6922   DOI   ScienceOn
32 Johnson, J., K. Jinneman, G. Stelma, B. G. Smith, D. Lye, J. Messer, et al. 2004. Natural atypical Listeria innocua strains with Listeria monocytogenes pathogenicity island 1 genes. Appl. Environ. Microbiol. 70: 4256-4266   DOI   ScienceOn
33 Ward, T. J., L. Gorski, M. K. Borucki, R. E. Mandrell, J. Hutchins, and K. Pupedis. 2004. Intraspecific phylogeny and lineage group identification based on the prfA virulence gene cluster of Listeria monocytogenes. J. Bacteriol. 186: 4994-5002   DOI   ScienceOn
34 Glaser, P., L. Frangeul, C. Buchrieser, C. Rusniok, A. Amend, F. Baquero, et al. 2001. Comparative genomics of Listeria species. Science 294: 849-852   PUBMED
35 Liu, D., M. L. Lawrence, A. J. Ainsworth, and F. W. Austin. 2007. Toward an improved laboratory definition of Listeria monocytogenes virulence. Int. J. Food Microbiol. 118: 101-115   DOI   ScienceOn
36 Moran, N. A. 2003. Tracing the evolution of gene loss in obligate bacterial symbionts. Curr. Opin. Microbiol. 6: 512-518   DOI   PUBMED   ScienceOn
37 Liu, D. 2006. Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen. J. Med. Microbiol. 55: 645-659   DOI   ScienceOn
38 Vazquez-Boland, J. A., M. Kuhn, P. Berche, T. Chakraborty, G. Dominguez-Bernal, W. Goebel, B. Gonzalez-Zorn, J. Wehland, and J. Kreft. 2001. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev. 14: 584-640   DOI   ScienceOn
39 Fiedler, F. 1988. Biochemistry of the cell surface of Listeria strains: A locating general view. Infection 16: 92-97   DOI
40 Hain, T., S. S. Chatterjee, R. Ghai, C. T. Kuenne, A. Billionm, C. Steinweg, et al. 2007. Pathogenomics of Listeria spp. Int. J. Med. Microbiol. 297: 541-557   DOI   ScienceOn
41 Sekizaki, T., D. Takamatsu, M. Osaki, and Y. Shimoji. 2005. Different foreign genes incidentally integrated into the same locus of the Streptococcus suis genome. J. Bacteriol. 187: 872-883   DOI   ScienceOn