• Title/Summary/Keyword: species survival

Search Result 787, Processing Time 0.034 seconds

Micropropagation of the hybrids of Actinidia deliciosa$\times$A. arguta by tissue culture (참다래$\times$다래 교잡종의 액아배양 및 캘러스 배양에 의한 기내번식)

  • 문흥규;권영진;이병실
    • Korean Journal of Plant Tissue Culture
    • /
    • v.28 no.4
    • /
    • pp.227-230
    • /
    • 2001
  • Kiwi (Actinidia deliciosa) is exotic plant and thus susceptible to cold climate in the middle part of Korean peninsular. Several hybrids have recently been developed to enhance cold tolerance by crossing them with domestic species (A. arguta), We have developed an efficient micropropagation technique for the hybrids using both axillary bud and callus culture systems. Shoot proliferation from axillary buds was possible on St medium supplemented with 0.2 mg/L Bh and 3.0 mg/L GA$_3$. In vivo cuttings of the proliferated shoots were more effective for root induction and subsequent survival than in vitro rooting. More than 95% of the plantlets were successfully transferred to field. Effective callus induction was achieved on MS or B$_{5}$ medium with 2,4-D or NAA. Although callus induction could be made from any combinations of media and auxins, shoot regeneration was observed only from the callus induced on medium containing NAA.A.

  • PDF

Protective Effects of Potassium Ion on Rotenone-Induced Apoptosis in Neuronal (Neuro 2A) Cells

  • Park, Ji-Hwan;Kim, Yun-Ha;Moon, Seong-Keun;Kim, Tae-Young;Kim, Jong-Moon
    • Journal of Korean Neurosurgical Society
    • /
    • v.38 no.6
    • /
    • pp.456-464
    • /
    • 2005
  • Objective : The authors investigated whether rotenone induces cellular death also in non-dopaminergic neurons and high concentration of potassium ion can show protective effect for non-dopaminergic neuron in case of rotenone-induced cytotoxicity. Methods : Neuro 2A cells was treated with rotenone, and their survival as well as cell death mechanism was estimated using 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium[MTT] assay, Lactate dehydrogenase[LDH] release assay, fluorescence microscopy, and agarose gel electrophoresis. The changes in rotenone-treated cells was also studied after co-treatment of 50mM KCl. And the protective effect of KCl was evaluated by mitochondrial membrane potential assay and compared with the effects of various antioxidants. Results : Neuro 2A cells treated with rotenone underwent apoptotic death showing chromosome condensation and fragmentation as well as DNA laddering. Co-incubation of neuro 2A cells with 50mM KCl prevented it from the cytotoxicity induced by rotenone. Intracellular accumulation of reactive oxygen species[ROS] resulting by rotenone were significantly reduced by 50mM KCl. Potassium exhibited significantly similar potency compared to the antioxidants. Conclusion : The present findings showed that potassium attenuated rotenone-induced cytotoxicity, intracellular accumulation of ROS, and fragmentation of DNA in Neuro 2A cells. These findings suggest the therapeutic potential of potassium ion in neuronal apoptosis, but the practical application of high concentration of potassium ion remains to be settled.

Antioxidant Activity of Mulberry Leaves Extract Fermented by Hericium erinaceum (버섯균사체 발효 뽕잎 추출물의 항산화 활성)

  • Kang, Jung Hoon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.1025-1035
    • /
    • 2017
  • In this study, the hot water extract from Mulberry (Morus alba) Leaves fermented with Hericium erinaceum mycelium (MA-HE) was assessed for antioxidant activity. Radical scavenging activity of MA-HE evaluated using 2,2-diphenyl-1-picrylhydrazyl(DPPH) radical and 2,2'-azino-bis(3-ethyl-benzothiazoline-6-sulfonic acid)(ABTS) radical. MA-HE showed 63% DPPH radical scavenging activity at $500{\mu}g/mL$ and 98.27% ABTS radical scavenging activity at $250{\mu}g/mL$. MA-HE was shown to significantly inhibited DNA strand breakage induced by free radical. MA-HE also inhibited free radical-mediated human serum albumin modification. MA-HE effectively inhibited $H_2O_2$ induced cell death and significantly increased of the 8% cell survival at $100{\mu}g/mL$. MA-HE decreased intracellular reactive oxygen species (ROS) levels in $H_2O_2$-treated cells. The results suggested that MA-HE can contribute to antioxidant and protected cells from oxidative stress-induced cell injury.

Analysis of Gene Expression in Larval Fat Body of Plutella Xylostella Under High Temperature (고온에서 배추좀나방 유충 지방체의 유전자 발현 변화 분석)

  • Kim, Kwang Ho;Lee, Dae-Weon
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.324-332
    • /
    • 2018
  • BACKGROUND: Insects are ectothermic organisms in terrestrial ecosystems and play various roles such as controlling plant biomass and maintaining species diversity. Because insects are ectothermic, their physiological responses are very sensitive to environmental temperature which determines survival and distribution of insect population and that affects climate change. This study aimed to identification of genes contributing to fitness under high temperature. METHODS AND RESULTS: To identify genes contributing to fitness under high temperature, the transcriptomes of fat body in Plutella xyostella larva have been analyzed via next generation sequencing. From the fat body transcriptomes, structure-related proteins, heat shock proteins, antioxidant enzymes and detoxification proteins were identified. Genes encoding proteins such as structural proteins (cuticular proteins, chitin synthase and actin), stress-related protein (cytochrome P450), heat shock protein and antioxidant enzyme (catalase) were up-regulated at high temperature. In contrast expression of glutathione S transferase was down-regulated. CONCLUSION: Identifications of temperature-specific up- or down-regulated genes can be useful for detecting temperature adaptation and understanding physiological responses in insect pests.

The Expression of Codon Optimised Hepatitis B Core Antigen (HBcAg) of Subgenotype B3 Open Reading Frame in Lactococcus lactis

  • Mustopa, Apon Zaenal;Wijaya, Sri Kartika;Ningrum, Ratih Asmana;Agustiyanti, Dian Fitria;Triratna, Lita;Alfisyahrin, Wida Nurul
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.3
    • /
    • pp.449-458
    • /
    • 2019
  • Hepatitis B treatments using immune therapy are gaining interest because of the improvements in dendritic cell performance for antigen presentation, which induces an appropriate immune response and raises patient survival rates. This research aims to produce a significant amount of the HBcAg antigen, which can induce an immune response and have a curative effect on HBV infection. In this study, the HBV subgenotype B3 of the HBcAg gene was used, which is dominant in Indonesia. Further, Lactococcus lactis bacteria was used as the host because of its safety and tightly regulated protein expression. The codon usage for the HBcAg gene was optimized to improve protein expression in L. lactis, which is important because a codon is not random between species. The HBcAg gene is attached to a pNZ8148 plasmid and transformed into the L. lactis NZ3900 expression host. The results confirm that a positive protein band (21 kDa) in two fractions of purified HBcAg was recognized by both western blotting and dot blot hybridization, even if the HBcAg optimized codon has higher GC contents than that suggested for L. lactis expression. Overall, this research strengthens the broad use of L. lactis bacteria for any protein expression, including higher protein expression of codon optimized HBcAg gene compared to non-optimized genes. Furthermore, the improvement in the codon optimization of the HBcAg gene significantly increases the total protein expression by 10-20%, and the expression level of the codon optimized HBcAg increases 1.5 to 3.2-times that of the native HBcAg.

Computational approaches for prediction of protein-protein interaction between Foot-and-mouth disease virus and Sus scrofa based on RNA-Seq

  • Park, Tamina;Kang, Myung-gyun;Nah, Jinju;Ryoo, Soyoon;Wee, Sunghwan;Baek, Seung-hwa;Ku, Bokkyung;Oh, Yeonsu;Cho, Ho-seong;Park, Daeui
    • Korean Journal of Veterinary Service
    • /
    • v.42 no.2
    • /
    • pp.73-83
    • /
    • 2019
  • Foot-and-Mouth Disease (FMD) is a highly contagious trans-boundary viral disease caused by FMD virus, which causes huge economic losses. FMDV infects cloven hoofed (two-toed) mammals such as cattle, sheep, goats, pigs and various wildlife species. To control the FMDV, it is necessary to understand the life cycle and the pathogenesis of FMDV in host. Especially, the protein-protein interaction between FMDV and host will help to understand the survival cycle of viruses in host cell and establish new therapeutic strategies. However, the computational approach for protein-protein interaction between FMDV and pig hosts have not been applied to studies of the onset mechanism of FMDV. In the present work, we have performed the prediction of the pig's proteins which interact with FMDV based on RNA-Seq data, protein sequence, and structure information. After identifying the virus-host interaction, we looked for meaningful pathways and anticipated changes in the host caused by infection with FMDV. A total of 78 proteins of pig were predicted as interacting with FMDV. The 156 interactions include 94 interactions predicted by sequence-based method and the 62 interactions predicted by structure-based method using domain information. The protein interaction network contained integrin as well as STYK1, VTCN1, IDO1, CDH3, SLA-DQB1, FER, and FGFR2 which were related to the up-regulation of inflammation and the down-regulation of cell adhesion and host defense systems such as macrophage and leukocytes. These results provide clues to the knowledge and mechanism of how FMDV affects the host cell.

Impact of Confinement and Population Size on the Instrumentally Inseminated Queen's Performance of Apis cerana Species in South Korea

  • Vung, Nguyen Ngoc;Kim, Iksoo;Lee, Man-Young;Kim, Hye Kyung;Kim, Dong Won;Choi, Yong Soo
    • Journal of Apiculture
    • /
    • v.33 no.4
    • /
    • pp.251-260
    • /
    • 2018
  • Instrumental insemination of honey bee is an attractive alternative to natural mating in breeding program as it allows mating crosses between desirable queen and specific drone. However, nursery condition that the queen is kept before and after insemination is major factor affected to the performance of instrumentally inseminated queen. In this study, we evaluated the influences of three different nursery-conditions of push-in cages, mini nuclei and normal colonies on number of spermatozoa stored in the spermatheca, body weight, onset of ovipositon and performance of instrumentally inseminated Apis cerana queen. Our results demonstrated that instrumentally inseminated queens kept in mini nuclei and in normal hives showed no significant difference in queen's weight (159.8 and 166.2mg, respectively), number of spermatozoa in spermatheca ($2.02{\times}10^6$ and $2.76{\times}10^6$, respectively), proportion of queen supersedure (33.3 and 66.7% queen survival at 11 months after oviposition, respectively) and brood production, compared to naturally mated queens. In contrast, instrumentally inseminated queens kept in push-in cages showed significant difference of those above data in comparison to queens mated naturally. Our results suggested that instrumentally inseminated queens could be kept in mini nuclei containing about 1.000 attendant bees to have desirable performance of queen whereas the push-in method should be practiced for the purpose of using queen in the length of time less than 7 months.

Transcriptome Analysis Unveils Gln3 Role in Amino Acids Assimilation and Fluconazole Resistance in Candida glabrata

  • Santos, Francisco J. Perez-de los;Garcia-Ortega, Luis Fernando;Robledo-Marquez, Karina;Guzman-Moreno, Jesus;Riego-Ruiz, Lina
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.5
    • /
    • pp.659-666
    • /
    • 2021
  • After Candida albicans, Candida glabrata is one of the most common fungal species associated with candidemia in nosocomial infections. Rapid acquisition of nutrients from the host is important for the survival of pathogens which possess the metabolic flexibility to assimilate different carbon and nitrogen compounds. In Saccharomyces cerevisiae, nitrogen assimilation is controlled through a mechanism known as Nitrogen Catabolite Repression (NCR). NCR is coordinated by the action of four GATA factors; two positive regulators, Gat1 and Gln3, and two negative regulators, Gzf3 and Dal80. A mechanism in C. glabrata similar to NCR in S. cerevisiae has not been broadly studied. We previously showed that in C. glabrata, Gln3, and not Gat1, has a major role in nitrogen assimilation as opposed to what has been observed in S. cerevisiae in which both factors regulate NCR-sensitive genes. Here, we expand the knowledge about the role of Gln3 from C. glabrata through the transcriptional analysis of BG14 and gln3Δ strains. Approximately, 53.5% of the detected genes were differentially expressed (DEG). From these DEG, amino acid metabolism and ABC transporters were two of the most enriched KEGG categories in our analysis (Up-DEG and Down-DEG, respectively). Furthermore, a positive role of Gln3 in AAA assimilation was described, as was its role in the transcriptional regulation of ARO8. Finally, an unexpected negative role of Gln3 in the gene regulation of ABC transporters CDR1 and CDR2 and its associated transcriptional regulator PDR1 was found. This observation was confirmed by a decreased susceptibility of the gln3Δ strain to fluconazole.

Ginsenosides attenuate bioenergetics and morphology of mitochondria in cultured PC12 cells under the insult of amyloid beta-peptide

  • Kwan, Kenneth Kin Leung;Yun, Huang;Dong, Tina Ting Xia;Tsim, Karl Wah Keung
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.473-481
    • /
    • 2021
  • Background: Mitochondrial dysfunction is one of the significant reasons for Alzheimer's disease (AD). Ginsenosides, natural molecules extracted from Panax ginseng, have been demonstrated to exert essential neuroprotective functions, which can ascribe to its anti-oxidative effect, enhancing central metabolism and improving mitochondrial function. However, a comprehensive analysis of cellular mitochondrial bioenergetics after ginsenoside treatment under Aβ-oxidative stress is missing. Methods: The antioxidant activities of ginsenoside Rb1, Rd, Re, Rg1 were compared by measuring the cell survival and reactive oxygen species (ROS) formation. Next, the protective effects of ginsenosides of mitochondrial bioenergetics were examined by measuring oxygen consumption rate (OCR) in PC12 cells under Aβ-oxidative stress with an extracellular flux analyzer. Meanwhile, mitochondrial membrane potential (MMP) and mitochondrial dynamics were evaluated by confocal laser scanning microscopy. Results: Ginsenoside Rg1 possessed the strongest anti-oxidative property, and which therefore provided the best protective function to PC12 cells under the Aβ oxidative stress by increasing ATP production to 3 folds, spare capacity to 2 folds, maximal respiration to 2 folds and non-mitochondrial respiration to 1.5 folds, as compared to Aβ cell model. Furthermore, ginsenoside Rg1 enhanced MMP and mitochondrial interconnectivity, and simultaneously reduced mitochondrial circularity. Conclusion: In the present study, these results demonstrated that ginsenoside Rg1 could be the best natural compound, as compared with other ginsenosides, by modulating the OCR of cultured PC12 cells during oxidative phosphorylation, in regulating MMP and in improving mitochondria dynamics under Aβ-induced oxidative stress.

Pyruvate Dehydrogenase Kinase Protects Dopaminergic Neurons from Oxidative Stress in Drosophila DJ-1 Null Mutants

  • Lee, Yoonjeong;Kim, Jaehyeon;Kim, Hyunjin;Han, Ji Eun;Kim, Sohee;Kang, Kyong-hwa;Kim, Donghoon;Kim, Jong-Min;Koh, Hyongjong
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.454-464
    • /
    • 2022
  • DJ-1 is one of the causative genes of early-onset familial Parkinson's disease (PD). As a result, DJ-1 influences the pathogenesis of sporadic PD. DJ-1 has various physiological functions that converge to control the levels of intracellular reactive oxygen species (ROS). Based on genetic analyses that sought to investigate novel antioxidant DJ-1 downstream genes, pyruvate dehydrogenase (PDH) kinase (PDK) was demonstrated to increase survival rates and decrease dopaminergic (DA) neuron loss in DJ-1 mutant flies under oxidative stress. PDK phosphorylates and inhibits the PDH complex (PDC), subsequently downregulating glucose metabolism in the mitochondria, which is a major source of intracellular ROS. A loss-of-function mutation in PDK was not found to have a significant effect on fly development and reproduction, but severely ameliorated oxidative stress resistance. Thus, PDK plays a critical role in the protection against oxidative stress. Loss of PDH phosphatase (PDP), which dephosphorylates and activates PDH, was also shown to protect DJ-1 mutants from oxidative stress, ultimately supporting our findings. Further genetic analyses suggested that DJ-1 controls PDK expression through hypoxia-inducible factor 1 (HIF-1), a transcriptional regulator of the adaptive response to hypoxia and oxidative stress. Furthermore, CPI-613, an inhibitor of PDH, protected DJ-1 null flies from oxidative stress, suggesting that the genetic and pharmacological inhibition of PDH may be a novel treatment strategy for PD associated with DJ-1 dysfunction.