• Title/Summary/Keyword: speaker dependent

Search Result 139, Processing Time 0.025 seconds

A Study on the Design of Web-based Speaker Verification System (웹 기반의 화자확인시스템 설계에 관한 연구)

  • 이재희;강철호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.23-30
    • /
    • 2000
  • In this paper, the web-based speaker verification system is designed. To decide the speaker recognition algorithm applied to the web-based speaker verification system, the recognition performance and special features of the text-dependent speaker recognition algorithms(DTW, DHMM, SCHMM) are compared through the computer simulation. Using the results of computer simulation, select DHMM as speaker recognition algorithm at web-based speaker verification system because DHMM has the proper recognition performance and initial training utterance number. And by the three-tier method using the ActiveX, DCOM techniques web-based speaker verification system is designed to be operated in the distributed processing environment.

  • PDF

Double Compensation Framework Based on GMM For Speaker Recognition (화자 인식을 위한 GMM기반의 이중 보상 구조)

  • Kim Yu-Jin;Chung Jae-Ho
    • MALSORI
    • /
    • no.45
    • /
    • pp.93-105
    • /
    • 2003
  • In this paper, we present a single framework based on GMM for speaker recognition. The proposed framework can simultaneously minimize environmental variations on mismatched conditions and adapt the bias free and speaker-dependent characteristics of claimant utterances to the background GMM to create a speaker model. We compare the closed-set speaker identification for conventional method and the proposed method both on TIMIT and NTIMIT. In the several sets of experiments we show the improved recognition rates on a simulated channel and a telephone channel condition by 7.2% and 27.4% respectively.

  • PDF

A Study on the Text-Independent Speaker Recognition from the Vowel Extraction (모음 검출을 통한 텍스트 독립 화자인식에 관한 연구)

  • 김에녹;복혁규;김형래
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.10
    • /
    • pp.82-91
    • /
    • 1994
  • In this thesis, we perform the experiment of speaker recognition by identifying vowels in the pronounciation of each speaker. In detail, we extract the vowels from the pronounciation of each speaker first. From it, we check the frequency energgy of 29 channels. After changing these into fuzzy values, we employ the fuzzy inference to recognize the speaker by text-dependent and text-independent methods. For this experiment, an algorithm of extracting vowels is developed, and newly introduced parameter is the frequency energy of the 29 channels computed from the extracted vowels. It shows the features of each speakers better than existing parameters. The advanced point of this paramter is to use the reference pattern only without the help of any codebook. As a rewult, test-dependent method showed about 95.5% rate of recognition, and text-independent method showed about 94.2% rate of recognition.

  • PDF

The Improvement Performance of Speaker Verification System Through the Multi-Vector Quantization Codebook Structure (멀티 VQ 코드북을 이용한 화자확인 시스템의 성능개선)

  • Lee, Jae-Hee;Lee, Sang-Cheol;Jung, Yeon-Hai
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.176-179
    • /
    • 2005
  • In this paper, we propose the new method that separate the existing common VQ code book into two parts, one is the common VQ code book which is the half of existing common VQ code book, another is the personal speaker VQ code book which accommodate the personal speaker characteristic, variation to improve the performance of the text-dependent speaker verification system using discrete HMM. We apply the propose method m this paper to the text-dependent speaker verification system using discrete HMM and have the improvement performance of about 0.24% compared to existing method

  • PDF

SVM Based Speaker Verification Using Sparse Maximum A Posteriori Adaptation

  • Kim, Younggwan;Roh, Jaeyoung;Kim, Hoirin
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.5
    • /
    • pp.277-281
    • /
    • 2013
  • Modern speaker verification systems based on support vector machines (SVMs) use Gaussian mixture model (GMM) supervectors as their input feature vectors, and the maximum a posteriori (MAP) adaptation is a conventional method for generating speaker-dependent GMMs by adapting a universal background model (UBM). MAP adaptation requires the appropriate amount of input utterance due to the number of model parameters to be estimated. On the other hand, with limited utterances, unreliable MAP adaptation can be performed, which causes adaptation noise even though the Bayesian priors used in the MAP adaptation smooth the movements between the UBM and speaker dependent GMMs. This paper proposes a sparse MAP adaptation method, which is known to perform well in the automatic speech recognition area. By introducing sparse MAP adaptation to the GMM-SVM-based speaker verification system, the adaptation noise can be mitigated effectively. The proposed method utilizes the L0 norm as a regularizer to induce sparsity. The experimental results on the TIMIT database showed that the sparse MAP-based GMM-SVM speaker verification system yields a 42.6% relative reduction in the equal error rate with few additional computations.

  • PDF

On a robust text-dependent speaker identification over telephone channels (전화음성에 강인한 문장종속 화자인식에 관한 연구)

  • Jung, Eu-Sang;Choi, Hong-Sub
    • Speech Sciences
    • /
    • v.2
    • /
    • pp.57-66
    • /
    • 1997
  • This paper studies the effects of the method, CMS(Cepstral Mean Subtraction), (which compensates for some of the speech distortion. caused by telephone channels), on the performance of the text-dependent speaker identification system. This system is based on the VQ(Vector Quantization) and HMM(Hidden Markov Model) method and chooses the LPC-Cepstrum and Mel-Cepstrum as the feature vectors extracted from the speech data transmitted through telephone channels. Accordingly, we can compare the correct recognition rates of the speaker identification system between the use of LPC-Cepstrum and Mel-Cepstrum. Finally, from the experiment results table, it is found that the Mel-Cepstrum parameter is proven to be superior to the LPC-Cepstrum and that recognition performance improves by about 10% when compensating for telephone channel using the CMS.

  • PDF

A study on the spoken digit recognition performance of the Two-Stage recurrent neural network (2단 회귀신경망의 숫자음 인식에관한 연구)

  • 안점영
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.3B
    • /
    • pp.565-569
    • /
    • 2000
  • We compose the two-stage recurrent neural network that returns both signals of a hidden and an output layer to the hidden layer. It is tested on the basis of syllables for Korean spoken digit from /gong/to /gu. For these experiments, we adjust the neuron number of the hidden layer, the predictive order of input data and self-recurrent coefficient of the decision state layer. By the experimental results, the recognition rate of this neural network is between 91% and 97.5% in the speaker-dependent case and between 80.75% and 92% in the speaker-independent case. In the speaker-dependent case, this network shows an equivalent recognition performance to Jordan and Elman network but in the speaker-independent case, it does improved performance.

  • PDF

Speaker Adaptation using ICA-based Feature Transformation (ICA 기반의 특징변환을 이용한 화자적응)

  • Park ManSoo;Kim Hoi-Rin
    • MALSORI
    • /
    • no.43
    • /
    • pp.127-136
    • /
    • 2002
  • The speaker adaptation technique is generally used to reduce the speaker difference in speech recognition. In this work, we focus on the features fitted to a linear regression-based speaker adaptation. These are obtained by feature transformation based on independent component analysis (ICA), and the transformation matrix is learned from a speaker independent training data. When the amount of data is small, however, it is necessary to adjust the ICA-based transformation matrix estimated from a new speaker utterance. To cope with this problem, we propose a smoothing method: through a linear interpolation between the speaker-independent (SI) feature transformation matrix and the speaker-dependent (SD) feature transformation matrix. We observed that the proposed technique is effective to adaptation performance.

  • PDF

Speaker Adaptation Using ICA-Based Feature Transformation

  • Jung, Ho-Young;Park, Man-Soo;Kim, Hoi-Rin;Hahn, Min-Soo
    • ETRI Journal
    • /
    • v.24 no.6
    • /
    • pp.469-472
    • /
    • 2002
  • Speaker adaptation techniques are generally used to reduce speaker differences in speech recognition. In this work, we focus on the features fitted to a linear regression-based speaker adaptation. These are obtained by feature transformation based on independent component analysis (ICA), and the feature transformation matrices are estimated from the training data and adaptation data. Since the adaptation data is not sufficient to reliably estimate the ICA-based feature transformation matrix, it is necessary to adjust the ICA-based feature transformation matrix estimated from a new speaker utterance. To cope with this problem, we propose a smoothing method through a linear interpolation between the speaker-independent (SI) feature transformation matrix and the speaker-dependent (SD) feature transformation matrix. From our experiments, we observed that the proposed method is more effective in the mismatched case. In the mismatched case, the adaptation performance is improved because the smoothed feature transformation matrix makes speaker adaptation using noisy speech more robust.

  • PDF

Speaker Identification in Small Training Data Environment using MLLR Adaptation Method (MLLR 화자적응 기법을 이용한 적은 학습자료 환경의 화자식별)

  • Kim, Se-hyun;Oh, Yung-Hwan
    • Proceedings of the KSPS conference
    • /
    • 2005.11a
    • /
    • pp.159-162
    • /
    • 2005
  • Identification is the process automatically identify who is speaking on the basis of information obtained from speech waves. In training phase, each speaker models are trained using each speaker's speech data. GMMs (Gaussian Mixture Models), which have been successfully applied to speaker modeling in text-independent speaker identification, are not efficient in insufficient training data environment. This paper proposes speaker modeling method using MLLR (Maximum Likelihood Linear Regression) method which is used for speaker adaptation in speech recognition. We make SD-like model using MLLR adaptation method instead of speaker dependent model (SD). Proposed system outperforms the GMMs in small training data environment.

  • PDF