• Title/Summary/Keyword: spatio-temporal features

Search Result 80, Processing Time 0.024 seconds

A Robust Video Fingerprinting Algorithm Based on Centroid of Spatio-temporal Gradient Orientations

  • Sun, Ziqiang;Zhu, Yuesheng;Liu, Xiyao;Zhang, Liming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2754-2768
    • /
    • 2013
  • Video fingerprints generated from global features are usually vulnerable against general geometric transformations. In this paper, a novel video fingerprinting algorithm is proposed, in which a new spatio-temporal gradient is designed to represent the spatial and temporal information for each frame, and a new partition scheme, based on concentric circle and rings, is developed to resist the attacks efficiently. The centroids of spatio-temporal gradient orientations (CSTGO) within the circle and rings are then calculated to generate a robust fingerprint. Our experiments with different attacks have demonstrated that the proposed approach outperforms the state-of-the-art methods in terms of robustness and discrimination.

BoF based Action Recognition using Spatio-Temporal 2D Descriptor (시공간 2D 특징 설명자를 사용한 BOF 방식의 동작인식)

  • KIM, JinOk
    • Journal of Internet Computing and Services
    • /
    • v.16 no.3
    • /
    • pp.21-32
    • /
    • 2015
  • Since spatio-temporal local features for video representation have become an important issue of modeless bottom-up approaches in action recognition, various methods for feature extraction and description have been proposed in many papers. In particular, BoF(bag of features) has been promised coherent recognition results. The most important part for BoF is how to represent dynamic information of actions in videos. Most of existing BoF methods consider the video as a spatio-temporal volume and describe neighboring 3D interest points as complex volumetric patches. To simplify these complex 3D methods, this paper proposes a novel method that builds BoF representation as a way to learn 2D interest points directly from video data. The basic idea of proposed method is to gather feature points not only from 2D xy spatial planes of traditional frames, but from the 2D time axis called spatio-temporal frame as well. Such spatial-temporal features are able to capture dynamic information from the action videos and are well-suited to recognize human actions without need of 3D extensions for the feature descriptors. The spatio-temporal BoF approach using SIFT and SURF feature descriptors obtains good recognition rates on a well-known actions recognition dataset. Compared with more sophisticated scheme of 3D based HoG/HoF descriptors, proposed method is easier to compute and simpler to understand.

A Design of Spatio-Temporal Data Model for Simple Fuzzy Regions

  • Vu Thi Hong Nhan;Chi, Jeong-Hee;Nam, Kwang-Woo;Ryu, Keun-Ho
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.384-387
    • /
    • 2003
  • Most of the real world phenomena change over time. The ability to represent and to reason geographic data becomes crucial. A large amount of non-standard applications are dealing with data characterized by spatial, temporal and/or uncertainty features. Non-standard data like spatial and temporal data have an inner complex structure requiring sophisticated data representation, and their operations necessitate sophisticated and efficient algorithms. Current GIS technology is inefficient to model and to handle complex geographic phenomena, which involve space, time and uncertainty dimensions. This paper concentrates on developing a fuzzy spatio-temporal data model based on fuzzy set theory and relational data models. Fuzzy spatio-temporal operators are also provided to support dynamic query.

  • PDF

Forecasting COVID-19 confirmed cases in South Korea using Spatio-Temporal Graph Neural Networks

  • Ngoc, Kien Mai;Lee, Minho
    • International Journal of Contents
    • /
    • v.17 no.3
    • /
    • pp.1-14
    • /
    • 2021
  • Since the outbreak of the coronavirus disease 2019 (COVID-19) pandemic, a lot of efforts have been made in the field of data science to help combat against this disease. Among them, forecasting the number of cases of infection is a crucial problem to predict the development of the pandemic. Many deep learning-based models can be applied to solve this type of time series problem. In this research, we would like to take a step forward to incorporate spatial data (geography) with time series data to forecast the cases of region-level infection simultaneously. Specifically, we model a single spatio-temporal graph, in which nodes represent the geographic regions, spatial edges represent the distance between each pair of regions, and temporal edges indicate the node features through time. We evaluate this approach in COVID-19 in a Korean dataset, and we show a decrease of approximately 10% in both RMSE and MAE, and a significant boost to the training speed compared to the baseline models. Moreover, the training efficiency allows this approach to be extended for a large-scale spatio-temporal dataset.

A Study on Spatio-temporal Features for Korean Vowel Lipreading (한국어 모음 입술독해를 위한 시공간적 특징에 관한 연구)

  • 오현화;김인철;김동수;진성일
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.19-26
    • /
    • 2002
  • This paper defines the visual basic speech units, visemes and investigates various visual features of a lip for the effective Korean lipreading. First, we analyzed the visual characteristics of the Korean vowels from the database of the lip image sequences obtained from the multi-speakers, thereby giving a definition of seven Korean vowel visemes. Various spatio-temporal features of a lip are extracted from the feature points located on both inner and outer lip contours of image sequences and their classification performances are evaluated by using a hidden Markov model based classifier for effective lipreading. The experimental results for recognizing the Korean visemes have demonstrated that the feature victor containing the information of inner and outer lip contours can be effectively applied to lipreading and also the direction and magnitude of the movement of a lip feature point over time is quite useful for Korean lipreading.

Spatio-Temporal Residual Networks for Slide Transition Detection in Lecture Videos

  • Liu, Zhijin;Li, Kai;Shen, Liquan;Ma, Ran;An, Ping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4026-4040
    • /
    • 2019
  • In this paper, we present an approach for detecting slide transitions in lecture videos by introducing the spatio-temporal residual networks. Given a lecture video which records the digital slides, the speaker, and the audience by multiple cameras, our goal is to find keyframes where slide content changes. Since temporal dependency among video frames is important for detecting slide changes, 3D Convolutional Networks has been regarded as an efficient approach to learn the spatio-temporal features in videos. However, 3D ConvNet will cost much training time and need lots of memory. Hence, we utilize ResNet to ease the training of network, which is easy to optimize. Consequently, we present a novel ConvNet architecture based on 3D ConvNet and ResNet for slide transition detection in lecture videos. Experimental results show that the proposed novel ConvNet architecture achieves the better accuracy than other slide progression detection approaches.

Path Selection and Summarization of User's Moving Path for Spatio-Temporal Location Prediction (시공간 위치 예측을 위한 사용자 이동 경로의 선택과 요약 방법)

  • Yoon, Tae-Bok;Lee, Dong-Hoon;Jung, Je-Hee;Lee, Jee-Hyong
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.298-303
    • /
    • 2008
  • User adaptive services have been important features in many applications. To provide such services, various techniques with various kinds of data are being used. In this paper, we propose a method to analyze user's past moving paths for predicting the goal position and the path to the goal by observing the user's current moving path. We develop a spatio-temporal similarity measure between paths. We choose a past path which is the most similar to the current path using the similarity. Based on the chosen path, user's spatio-temporal position is estimated. Through experiments we confirm this method is useful and effective.

  • PDF

Construction of a Spatio-Temporal Dataset for Deep Learning-Based Precipitation Nowcasting

  • Kim, Wonsu;Jang, Dongmin;Park, Sung Won;Yang, MyungSeok
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.135-142
    • /
    • 2022
  • Recently, with the development of data processing technology and the increase of computational power, methods to solving social problems using Artificial Intelligence (AI) are in the spotlight, and AI technologies are replacing and supplementing existing traditional methods in various fields. Meanwhile in Korea, heavy rain is one of the representative factors of natural disasters that cause enormous economic damage and casualties every year. Accurate prediction of heavy rainfall over the Korean peninsula is very difficult due to its geographical features, located between the Eurasian continent and the Pacific Ocean at mid-latitude, and the influence of the summer monsoon. In order to deal with such problems, the Korea Meteorological Administration operates various state-of-the-art observation equipment and a newly developed global atmospheric model system. Nevertheless, for precipitation nowcasting, the use of a separate system based on the extrapolation method is required due to the intrinsic characteristics associated with the operation of numerical weather prediction models. The predictability of existing precipitation nowcasting is reliable in the early stage of forecasting but decreases sharply as forecast lead time increases. At this point, AI technologies to deal with spatio-temporal features of data are expected to greatly contribute to overcoming the limitations of existing precipitation nowcasting systems. Thus, in this project the dataset required to develop, train, and verify deep learning-based precipitation nowcasting models has been constructed in a regularized form. The dataset not only provides various variables obtained from multiple sources, but also coincides with each other in spatio-temporal specifications.

Dynamic gesture recognition using a model-based temporal self-similarity and its application to taebo gesture recognition

  • Lee, Kyoung-Mi;Won, Hey-Min
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2824-2838
    • /
    • 2013
  • There has been a lot of attention paid recently to analyze dynamic human gestures that vary over time. Most attention to dynamic gestures concerns with spatio-temporal features, as compared to analyzing each frame of gestures separately. For accurate dynamic gesture recognition, motion feature extraction algorithms need to find representative features that uniquely identify time-varying gestures. This paper proposes a new feature-extraction algorithm using temporal self-similarity based on a hierarchical human model. Because a conventional temporal self-similarity method computes a whole movement among the continuous frames, the conventional temporal self-similarity method cannot recognize different gestures with the same amount of movement. The proposed model-based temporal self-similarity method groups body parts of a hierarchical model into several sets and calculates movements for each set. While recognition results can depend on how the sets are made, the best way to find optimal sets is to separate frequently used body parts from less-used body parts. Then, we apply a multiclass support vector machine whose optimization algorithm is based on structural support vector machines. In this paper, the effectiveness of the proposed feature extraction algorithm is demonstrated in an application for taebo gesture recognition. We show that the model-based temporal self-similarity method can overcome the shortcomings of the conventional temporal self-similarity method and the recognition results of the model-based method are superior to that of the conventional method.

Spatio-Temporal Analysis of Trajectory for Pedestrian Activity Recognition

  • Kim, Young-Nam;Park, Jin-Hee;Kim, Moon-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.961-968
    • /
    • 2018
  • Recently, researches on automatic recognition of human activities have been actively carried out with the emergence of various intelligent systems. Since a large amount of visual data can be secured through Closed Circuit Television, it is required to recognize human behavior in a dynamic situation rather than a static situation. In this paper, we propose new intelligent human activity recognition model using the trajectory information extracted from the video sequence. The proposed model consists of three steps: segmentation and partitioning of trajectory step, feature extraction step, and behavioral learning step. First, the entire trajectory is fuzzy partitioned according to the motion characteristics, and then temporal features and spatial features are extracted. Using the extracted features, four pedestrian behaviors were modeled by decision tree learning algorithm and performance evaluation was performed. The experiments in this paper were conducted using Caviar data sets. Experimental results show that trajectory provides good activity recognition accuracy by extracting instantaneous property and distinctive regional property.