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Abstract 
 

There has been a lot of attention paid recently to analyze dynamic human gestures that vary 

over time. Most attention to dynamic gestures concerns with spatio-temporal features, as 

compared to analyzing each frame of gestures separately. For accurate dynamic gesture 

recognition, motion feature extraction algorithms need to find representative features that 

uniquely identify time-varying gestures. This paper proposes a new feature-extraction 

algorithm using temporal self-similarity based on a hierarchical human model. Because a 

conventional temporal self-similarity method computes a whole movement among the 

continuous frames, the conventional temporal self-similarity method cannot recognize 

different gestures with the same amount of movement. The proposed model-based temporal 

self-similarity method groups body parts of a hierarchical model into several sets and 

calculates movements for each set. While recognition results can depend on how the sets are 

made, the best way to find optimal sets is to separate frequently used body parts from less-used 

body parts. Then, we apply a multiclass support vector machine whose optimization algorithm 

is based on structural support vector machines. In this paper, the effectiveness of the proposed 

feature extraction algorithm is demonstrated in an application for taebo gesture recognition. 

We show that the model-based temporal self-similarity method can overcome the 

shortcomings of the conventional temporal self-similarity method and the recognition results 

of the model-based method are superior to that of the conventional method. 
 

 

Keywords: Gesture recognition, feature extraction, dynamic gesture, gesture spotting 
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1. Introduction 

Human gesture recognition is receiving increased attention from computer vision researchers. 

This attention is motivated by a wide spectrum of application domains, such as video 

surveillance, machine control, interactive physical game, and sport video analysis. All these 

application domains have their own demands, but in general, the gesture recognition methods 

must be able to detect and recognize various human gestures in real time. Also, as people look 

different and move differently, the designed methods must be able to handle both variations in 

performing gestures and various kinds of environments. 

Many approaches for human gesture recognition have been proposed in the literature [1,2]. 

Recently there have been a lot of studies on analyzing dynamic human gestures that vary over 

time. Most approaches to dynamic gesture recognition are addressed with a variety of machine 

learning techniques such as Hidden Markov Models (HMM) [6] and Support Vector Machines 

(SVM) [7]. The HMM-based approach can process data in the time domain, but it requires 

multi-dimensional gesture data to be converted into discrete one-dimensional data. On the 

other hand, the SVM-based approach can deal with multi-dimensional data and is easy to 

optimize. 

For dynamic gesture recognition, time-varying gestures have been represented as 

spatio-temporal features, instead of each frame being analyzed as individual, separate gestures. 

Bobick and Davis use spatio-temporal templates where a vector value at each point is a 

function of the motion properties at the corresponding spatial location in an image sequence 

[3]. Li and Greenspan build a multi-scale gesture model as a set of 3D spatio-temporal surfaces 

of a time-varying contour [4]. Gorelick et al. analyze 2D shapes as silhouettes of a moving 

torso and protruding limbs and generalize to deal with volumetric space-time action shapes [5]. 

Junejo et al. propose a temporal self-similarity(TSS) method, as a gesture descriptor that 

captures the structure of temporal similarities and dissimilarities within gesture sequences for 

view-independent video analysis [7]. However, TSS does not take into account relations 

among parts of the human body. The TSS method cannot recognize similar gestures performed 

with different body parts, such as a Jab with a hand and a Side Kick with a leg.  

In this paper, we use TSS for dynamic gesture features and modify it by grouping body parts 

into several sets. Dividing a whole body into several sets allows a recognition system to know 

whose sets move because it must no longer consider a body as one set. For example, while the 

modified TSS can recognize whose sets move, TSS can know only how much the body moves. 

Also, using a human model with relationships among body parts can be a solution in cases 

where some parts are missing from feature extraction. In Section 2, we describe TSS and the 

proposed model-based TSS. The proposed model-based TSS ties adjacent parts that are likely 

to move together in the human model. Then, the proposed TSS is applied to taebo gesture 

recognition using SVM in Section 3. Section 4 presents experimental results of taebo gesture 

recognition using the model-based TSS compared to conventional TSS. 

2. Model-based TSS for Dynamic Gesture Features 

This section proposes new dynamic gesture features based on a human model 
Mmh ..1

, where 

M is the number of body parts. We introduce the conventional TSS [7] and describe the 

proposed model-based TSS using 
Mmh ..1

. 
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2.1 Temporal Self-Similarity 
The conventional TSS feature is used to discover particular time-dependent gesture features 

and data in a matrix format. Junejo et al. extracted gesture features using a self-similarity 

matrix (SSM) in calculating distance among all features by extracting time-frame and storage 

results [7]. For a sequence of frames I=  NIII ,,, 21  , an SSM is computed in a Euclidean 

distance matrix form of size NN  , 
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where N is the number of frames. A diagonal of the matrix, iid , refers to the periodicity of 

gestures (‘0’) which is a comparison of the frame to itself. With a human or object of M parts 
Mmh ..1 , a Euclidean distance between the m-th parts at any instances i and j can be calculated 

as the sum of movements: 
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d                                                              (2) 

where 
m
ih  and 

m
jh are positions of m-th parts at time instances i and j. Each structure or pattern 

of the matrix is dependent on the distance measurement of ijd . 

 

                           
(a)  right hand forward    (b) left hand forward    (c) both hands forward 

Fig. 1. TSS feature pattern examples 

 

Fig. 1 shows pattern examples by extracting gesture features using TSS after normalizing 

consecutive gesture data. The patterns are made by gestures of the right and left hands, which 

moved to the front by 50cm in 10 frames. TSS calculates by estimating the Euclidean distance 

of all gesture trajectories. In Fig. 1, a lighter color means a longer distance and longer 

movement, while a darker color means a shorter distance and shorter movement. Figs. 1(a) 

and 1(b) reveal that gesture features would be almost the same if the size of the gesture is equal 

even though the gestures are created using different body parts. In addition, Fig. 1(c) differs 

from Figs. 1(a) and 1(b), but also has a similar pattern to Figs. 1(a) and 1(b) if they are scaled 

with their maximum values. Even though the gestures are created with both hands, however, it 

is unknown which body part is used to create these gestures. Therefore, the conventional TSS 

feature has difficulty determining partial gestures because of a lack of information on which 

body parts are used to create the gestures. 

2.2 Model-based TSS 
In this section, we propose a model-based TSS feature to solve the shortcomings of the 

conventional TSS feature. The model-based TSS feature is obtained by binding the features of 

human or object with more than one feature, as follows from Eq. (2) : 
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where p is the number of sets, and pM  refers to the set of features within the  p-th set.  

The proposed model-based TSS feature has the following properties : 

i) MMMM p  ...21 : a union of feature sets is included in a set of all features. 

ii)  ji MM  : an intersection of any feature sets may not be empty, meaning a 

feature can be included in different sets. 

iii) If each feature set has the same size of gesture, the model-based TSS has the same 

pattern. 

iv) If there is no movement, the model-based TSS has a homogenous pattern. 

v) If a noise occurs, the distance ijpd between the noisy frame and any other frames is 

equal to the size of the noise. The noised frame is calculated the sum of movements 

as a long pattern, and the following frames are represented as point patterns. 

vi) If the movement of a feature set has a constant velocity, the distance ijpd with 

following frames is proportional to the distance between i and j. The previous 

patterns of such proportional distances are repeated behind the newly-calculated 

pattern.  

vii) If the movement of a feature set has a cycle, several similar patterns of distance ijpd  

appear. For example, the following model-base TSS contains periodic flat long 

patterns. 

viii) If the movement of a feature set has constant acceleration, then the distance ijpd  

becomes greater and the length of the patterns increases. 
 

The conventional TSS uses a square matrix and its diagonal itself (without difference) is the 

comparison of the frame, represented by 0, which stands for gesture symmetry. Therefore, we 

arrange all values in line without gesture symmetry in the matrix (not a square matrix) in the 

Model-based TSS. In Fig. 2, human body parts are grouped into six sets and each cell in 

left-side tables present a corresponding set of body parts. Each row of the Model-based TSS in 

the middle shows TSS of the corresponding body set. Figs. 2(a) and 2(b) present the 

model-based TSS features after normalizing consecutive gesture frames that created by 

moving right and left hands to the front by 50cm in 10 frames. The features get the information 

on which body part is used because the patterns that represent movements of the right and left 

hands are presented on different lines. As shown in Fig. 2(c), in addition, the Model-based 

TSS displays the gestures easily, even though both hands are used at the same time. Any two 

body parts which are differentiated from each other should be included in different feature 

sets. 

3. Taebo Gesture Recognition 

We apply the proposed model-based TSS feature to taebo gestures recognition and implement 

a gesture recognition method that employs human detection, gesture spotting, and gesture 

recognition algorithms, which is summarized in Fig. 3. 
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Head, Neck, Shoulder 

  

Torso, Hip 

Left Elbow, Left Hand 

Right Elbow, Right Hand 

Left Knee, Left Foot 

Right Knee, Right Foot 

 (a)  
Head, Neck, Shoulder 

  

Torso, Hip 

Left Elbow, Left Hand 

Right Elbow, Right Hand 

Left Knee, Left Foot 

Right Knee, Right Foot 

 (b)  
Head, Neck, Shoulder 

  

Torso, Hip 

Left Elbow, Left Hand 

Right Elbow, Right Hand 

Left Knee, Left Foot 

Right Knee, Right Foot 

 (c)  
Fig. 2. Model-based TSS pattern examples : (a)  right hand forward, (b) left hand forward, (c) both 

hands forward 

 

 

 
Fig. 3. Overview of the proposed gesture recognition method 

3.1 Human Detection and Model Initialization 

 
Fig. 4. Human KINECT model 

 

To detect a human from a background in a frame, we used a KINECT camera with an infrared 

sensor at 30 frames per second. The KINECT camera use the human skeleton model ih , Fig. 4, 

which consists of 15 body parts. If a user strikes a pose called “PSI,” which looks like lifting a 

weight by placing his/her feet about as wide as the shoulders, the user is segmented from the 

background and the calibration is carried out with the human model by obtaining a 3D position 

of each skeleton part as x, y, and z dimensional values. 

Fig. 5 shows 9 taebo gestures: Front Kick, Side Kick, Knee Kick, Cross Punch, Jab, 
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Uppercut, Stand, Step 1, and Step 2. Most of these gestures have large movements of one limb 

through a straight line in one direction. For example, the Front Kick, Side Kick, and Knee Kick 

all stretch out one leg. Also, the Cross Punch, Jab, and Uppercut all stretch out one arm. As a 

consequence, we need algorithms to identify and recognize gestures that have similar 

movements but use different limbs. 

 

   
Front Kick 

 

Side Kick Knee Kick 

   
Cross Punch 

 

Jab Uppercut 

   
Stand 

 

Step 1 Step 2 

Fig. 5. Taebo gestures using a human model 

3.2 Gesture Spotting 
For recognition of time-varying gestures, it is necessary to get a meaningful gesture only from 

input video sequences. This can present a segmentation(spotting) problem that detects a 

dynamic gesture boundary in finding when a gesture starts and when it ends in a continuous 

body trajectory [8]. For more efficient gesture recognition, it is an important task to find 

candidate gesture boundaries. In general, the following three properties are available to find 

candidates for the cut [9]: 

- a frame that has an abnormal velocity, 

- a frame that has a static gesture, and 

- a frame that has a severe curvature. 

Also, a frame can be selected if it has a common gesture pattern, which is often observed at the 

start and end of the gesture.  

In this paper, we define an individual gesture by stopping for a short time before and after 

each gesture (i.e., one gesture is performed after another but a pause exists between the two 

gestures). At the end of a gesture such as punch, stand, or step, the person pauses for a moment. 

For kick gestures, however, it is difficult for a person to stay balanced at the end of the gesture. 

Hence, such gestures end by putting down his leg to the ground. Because a gesture increases 

variation at the start of the gesture and suddenly decreases at the end, we define a candidate 

frame as one that has a sudden variation in size, velocity, and curvature of movement. 
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After gesture spotting, we can get a set of meaningful frames to configure the dynamic 

gesture. However, whenever the same gesture is performed, the number of spotted frames and 

the number of features will vary. It is not appropriate if a recognition system needs the same 

number of features. Thus, we normalize the number of frames to make the same number of 

frames, n, per gesture. The algorithm for normalizing the number of frames includes the first 

frame of spotted frames, and then the following normalized j-th frames can be made by 

interpolation between two adjacent spotted frames. 

3.3 Gesture Feature Extraction 
Once meaningful gestures are segmented, gesture features can be extracted. The extraction of 

gesture features is a process of extracting common gesture properties. In addition, it is a 

process of recognizing gestures based on distinctive features, instead of a great number of 

complicated data. In this paper, we propose a model-based TSS feature that ties body parts of a 

human model into several sets based on their hierarchical relations. The hierarchical relations, 

which are configured in tree form with parent-child relationships, have advantages of easy 

extension and easy updating. In such a hierarchical human-body model, hands and feet can be 

considered as lowest-level nodes which are farthest from the center of the human body. As 

they become farther from the center node, the degree of freedom of the human body increases. 

With taebo gestures, there are a lot of movements in the hands and feet, while a face and neck 

has relatively little movements. Therefore, the face and neck are bound, and we group a set of 

body parts by focusing on the rest of the parts (especially leaf nodes). 

 

     

(a) (b) (c) (d)                                 (e) 

Fig. 6. Human model examples which group 15 body parts into (a) 1, (b) 5, (c) 6, (d) 10, and (e) 15 sets 

 

Fig. 6(a) is a model that groups body parts as a single set, which obtained results similar to 

conventional TSS. Fig. 6(b) is a model that groups body parts into five sets. This model groups 

arms and elbows and knees and feet, which are commonly used in taebo, in four sets (arm right 

and left, leg right and left), and groups central parts(head, neck, torso, shoulders, and hip), 

which are used relatively little, in a single set. Fig. 6(c) is a model that groups the parts into six 

sets. This is similar to Fig. 6(b), without separating torso and hips from the head, neck, and 

shoulders. Because the central parts are a large portion of the human body, Fig. 6(c) is divided 

into upper parts and lower parts. The model shown in Fig. 6(d) divides four limbs into each 

part. Fig. 6(e) is a model that uses 15 parts as they are, and movement of each part is measured. 

Fig. 7 presents model-based TSS feature patterns of a taebo gesture ‘Knee Kick’ using 

grouped human models from Fig. 6. The gesture ‘Knee Kick’ has a large movement of one 

foot with a small amount of movement for hands and elbows. While the pattern of a single set, 

Fig. 7(b), cannot identify which parts are moved. In Fig. 7(f), the pattern of 15 sets separates 

all movement into each part and does not know relations among them. 
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                                  (a) 

All 15 body parts 
 

(b) using the set grouping of Fig. 6(a) 
Head, Neck, Shoulder, Torso, Hip 

 

Left Elbow, Left Hand 

Right Elbow, Right Hand 

Left Knee, Left Foot 

Right Knee, Right Foot 

(c) using the set grouping of Fig. 6(b) 
Head, Neck, Shoulder 

 

Torso, Hip 

Left Elbow, Left Hand 

Right Elbow, Right Hand 

Left Knee, Left Foot 

Right Knee, Right Foot 

(d) using the set grouping of Fig. 6(c) 
Head, Neck, Shoulder 

 

Torso, Hip 

Left Elbow 

Left Hand 

Right Elbow 

Right Hand 

Left Knee 

Left Foot 

Right Knee 

Right Foot 

(e) using the set grouping of Fig. 6(d) 
Head 

 

Neck 

Left Shoulder 

Right Shoulder 

Torso 

Left Hip 

Right Hip 

Left Elbow 

Left Hand 

Right Elbow 

Right Hand 

Left Knee 

Left Foot 

Right Knee 

Right Foot 

(f) using the set grouping of Fig. 6(e) 

Fig. 7. Pattern examples of a taebo gesture Knee Kick: (a) TSS and (b-f) Model-based TSS using Fig. 6 

with feature sets 

 

Fig. 8 shows other pattern examples for ‘Side Kick’ and ‘Cross Punch’. The two gestures 

move a leg and an arm, but both are similar in terms of TSS features because both have similar 

amounts of movements. To distinguish these two gestures, a model-based TSS feature 

separates arms from legs, for example Fig. 6(c). Fig. 8 presents how the proposed 

model-based approach differentiates such gestures. 
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 � 

(a) 

 � 

(b) 

Fig. 8. Pattern examples: (a) Side Kick and (b) Cross Punch. Right: TSS. Left: Model-based TSS using 

Fig. 6(c) 

 

3.4 Gesture Recognition using SVM 
After computing features of time-varying gestures, a gesture recognition algorithm is created. 

In general, dynamic gestures can be represented as multi-dimensional and time-varying data. 

For time-varying gestures, the use of the hidden Markov model(HMM) is a common approach 

[10], but HMM requires a process to convert multi-dimensional gesture data into discrete 

one-dimensional data. In this paper, time-dependent features are computed, thus gesture 

recognition can focus on the problem of multi-dimensional data. We used the support vector 

machine, which is widely used in multi-dimensional classification [11]. The SVM converts 

data into multi-dimensional spaces and divides them into several classes by rendering them in 

multi-dimensions in calculating a support vector. The SVM has a non-linear, complicated 

decision boundary and it is difficult to optimize them. However, because the SVM just 

requires selecting a kernel, the kernel’s parameters, and a soft margin parameter, it is relatively 

easy to achieve optimization and it has superior generalization functions in classification. 

Because one-to-many classification, not one-to-one classification, is needed to recognize 

several dynamic taebo gestures, we adopt multiclass SVM developed by Crammer and Singer 

[12]. They find the following optimization problem: 

]  + 
2

1
 [ min ∑∑

1=..1=

2

 ,

t

i

i

kr

r
ξw

ξwC                                                (4) 

Subject to : ri,∀ iir,ryiy ξ≥xw+δxw
ii

-1   •-•  

where ix  is an i-th example of t training data in N features and is mapped to the multiclass set 

{ }k,...,1 . To recognize the nine gestures in Fig. 5, k is 9. w is a matrix of size k × N and 
rw  is 

the r-th row of M. 0>C  is a regularization constant that trades off margin size and training 

error. In this paper, we set the value of C to 900,000. 0  ≥iξ are slake variables. The 

multiclass SVM optimizes the basis function with an algorithm that is based on Structural 

SVMs [13]. Among structural learning algorithms, we use the 1-slake algorithm whose value 

is 99.75046 on a working set and is 99.78659 for a global. The loss function ryi
δ , is equal to 1 

if ryi = and 0 otherwise. Then the remaining parameters of the multiclass SVM are set by 

default values.  
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4. Experimental Results and Analysis 

The proposed dynamic gesture feature extraction and recognition algorithm was implemented 

on a Pentium IV 3.0 GHz CPU with 3 GB of memory running C++, OpenCV, and OpenNI 

with Microsoft Visual Studio 2010under Microsoft Windows XP. The experimental video 

frames were taken by a KINECT camera in a room with illumination of 600 Lux on average. 

The distance between the camera and a person was about1.5m. The gesture database was built 

by gathering 50 samples per gesture from 10 persons and each person performed each gesture 

five times. Thirty samples from each gesture were used as training data and the rest for testing.  

4.1 Experimental Results 
Table 1. Taebo gesture recognition rate(%) of human models in Fig. 6 

Features 

 

Gestures 

TSS 

Model-based TSS 

Fig. 6(a) 

(p=1) 

Fig. 6(b) 

 (p=5) 

Fig. 6(c) 

(p=6) 

Fig. 6(d) 

(p=10) 

Fig. 6(e) 

 (p=15) 

Front Kick 0 0 100 100 100 100 

Side Kick 80 80 90 100 100 100 

Knee Kick 55 55 80 80 65 65 

Cross Punch 10 10 80 70 55 55 

Uppercut 35 35 65 70 80 80 

Jab 15 15 65 85 85 85 

Stand 15 15 75 75 75 75 

Step 1 0 0 90 90 100 100 

Step 2 45 45 90 90 80 80 

Average 28.33 28.33 81.67 84.44 82.22 82.22 

 

Table 1 presents the recognition rates of nine taebo gestures based on how they were made by 

a human model. Experimental tests are performed after finding the best parameters for gesture 

recognition depending on the human model. The conventional TSS computes the sum of the 

distance of all body parts. So, if the sums of distances, Eq. (2), among gestures are pretty much 

the same, the recognition rate of TSS is low regardless of which body parts are moved. In TSS, 

‘Front Kick’ and ‘Step 1’ are not differentiated because the sum of the gesture movements of 

‘Front Kick,’ is similar to both ‘Knee Kick’ and ‘Step 2’. In ‘Step 1’ as well, the sum of the 

gesture movements is similar to those of most taebo gestures. 

On the other hands, the proposed model-based TSS features classifies more properly 

because the model-based features can identify gestures for which different body parts make 

the same amount of movements. In the model-based TSS, the recognition rate of ‘Front Kick’ 

improved by 100% and ‘Step 1’ by at least 90%, regardless of the human model, except when 

p=1 (which is the same as TSS). The recognition rates of ‘Cross Punch’, ‘Uppercut’, ‘Jab’, 

‘Stand’ and ‘Step 2’ also are improved drastically by at least 30% compared to TSS. 

  As a whole, in Table 1, the recognition rates of punch gestures vary depending on how hands, 

elbows, and shoulders are grouped, and those of kick gestures vary depending on how feet, 

knees, and hips are grouped. In Fig. 6(b), the human model is grouped into five sets in which 

torso, shoulders and hips are grouped into one set, and thus it is slightly difficult to recognize 

punch gestures using shoulders from kick gestures using hips, compared to Fig. 6(c) which 

separates shoulders from torso and hips. When the human model is divided into 10 or 15 sets 

that separate four limbs into hand and elbow or foot and knee, the recognition rates increase 

for ‘Uppercut’ and ‘Step 1’ but decrease for ‘Knee Kick’ and ‘Cross Punch’, compared to Fig. 
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6(c). 

 

 

Fig. 9. Recognition results and number of features of the human models in Fig.6(a-e) 

 

To evaluate the recognition performance of the algorithm, we used two measurements, 

recognition rates and the number of features. The number of features is calculated as seen in 

Fig. 9. In this paper, we set the number of normalized frames n to 10 and compute N = n
2
 = 100 

as the number of features of the TSS matrix. The number of features of the model-based TSS is 

computed as 
( )

2

1+
×=

nn
pN  by eliminating an upper triangle of the TSS matrix for each 

set, and thus a total number of 55 features are calculated in each set. In this paper, a total of 55 

features are saved when p is 1, while 275 features are saved when p is 5. When p is 6, 10, and 

15, the number of features is 330, 550, and 825, respectively. As shown in Fig. 9, the 

recognition rates differ depending on the number of sets in the model-based TSS, except when 

p=1 which is the same as TSS. Regardless of the human model, all results of the model-based 

TSS are much higher than that of TSS. Also, the number of features does not help to improve 

recognition performance. When the human model is divided into more detail, the inclusion of 

too many features with confused properties degrades the performance of the SVM classifier 

and thus gestures could not be recognized. As a result, an optimum recognition rate can be 

obtained if the human model is divided into an optimal number of sets.  

Table 2(a) shows that the TSS model confuses some Knee Kicks with Uppercuts. They are 

similar gestures in that both are moving one limb upward, but differ in the limb moved upward. 

In Table 2(b), the proposed model-based TSS can reduce confusions of similar movements 

with different parts and thus differentiate Knee Kick from Uppercut. In the case of Jab and 

Side Kick, they stretch one limb, but use either the hand or foot. TSS has some confusion in 

classifying them, but the model-based TSS can recognize Jab well. 

4.2 Experiments with the Same Number of Sets, but Different Combinations 
In this section, we conduct experiments on optimal combinations. When the human model is 

divided into 10 sets, as in Fig. 6(d), different combinations are possible, for example, in Fig. 

10. Table 3 presents the recognition results compared with Fig. 6(d). The model in Fig. 10(a) 

decreases the recognition rate to the lowest value. Such a combination especially confuses 

some Cross Punches with Knee Kicks and some Knee Kicks with Front Kicks. The reason is 

that grouping frequently-used elbows with relatively less-used shoulders and frequently-used 

knees with the relatively little-used hips decreases the recognition rate for Cross Punches and 

Knee Kicks. Any combinations of shoulder–elbow(Fig. 10(d)) and knee–foot(Fig. 10(b.c)) 
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achieve relatively lower results than that of Fig. 6(d), but much higher than that of Fig. 10(a). 

It confirms that the best way to find the optimal combination is separating frequently used 

body parts from less-used parts. 
 

Table 2. Confusion matrix on 20 test data values of each gesture 
Predicted 

True 

Front 

Kick 

Side 

Kick 

Knee 

Kick 

Cross 

Punch 
Uppercut Jab Stand 

Step 

1 

Step  

2 

Front Kick 
  

7 
     

13 

Side Kick 
 

16 2 
     

2 

Knee Kick 
  

11 
 

4 
   

5 

Cross Punch 
  

2 2 5 5 4 
 

2 

Uppercut 
 

3 
  

7 
 

3 
 

7 

Jab 
 

3 
  

3 3 8 
 

3 

Stand 3 11 
  

3 
 

3 
  

Step 1 5 2 2 
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Table 3. Taebo gesture recognition rate(%)of human models in Fig. 10 

Feature 

Gesture 

Model-based TSS (p=10) 

Fig. 6(d) Fig. 10(a) Fig. 10(b) Fig. 10(c) Fig. 10(d) 

Front Kick 100 80 90 90 90 

Side Kick 100 100 100 100 100 

Knee Kick 65 45 55 60 45 

Cross Punch 55 25 55 60 40 

Uppercut 80 60 70 70 80 

Jab 85 70 85 85 85 

Stand 75 70 75 75 75 

Step 1 100 100 100 100 100 

Step 2 80 70 80 80 80 

Average 82.22 68.89 78.89 80.00 77.22 

5. Conclusion 

Feature extraction of gestures is essential for gesture recognition. In this paper, we introduce a 

new feature-extraction algorithm for dynamic gesture recognition using a model-based TSS. 

In the conventional TSS, it is difficult to represent detailed dynamic gesture features because 

relationships among body parts are ignored even though the number of features of the TSS 

could be substantially reduced. Calculating sums of distances on all features makes it difficult 

to identify gestures if the distances moved are pretty much the same, even though different 

body parts are used. To overcome such a problem, we propose the model-based TSS, which 

has advantages in gesture recognition, because it is possible to get the information on what 

body parts are moved and how much they are moved. In the model-based TSS, we calculate by 

grouping the parts with similar movements into sets and then apply to taebo feature 

recognition. According to experimental results, the recognition rate of the model-based 

TSS(84.44%) is increased by 56.11% compared to that of TSS (28.33%) when the number of 

sets is 6. The punch gestures have the lowest recognition rate in the model-based TSS because 

it cannot determine their direction. In the model-based TSS, more sets do not mean a higher 

result, even though there are slightly different results according to the number of sets. Also, 

different combinations of grouping in the same number of sets does not affect the recognition 

rates much if frequently used parts are separated from relatively little-used parts. 

   We believe that our proposed algorithm is applicable to more general gesture recognition 

tasks, and in future work, we will apply our algorithm to various gesture databases. We are 

also currently extending our work in several directions. For instance, we are exploring ways to 

incorporate a direction of gestures without an excessively large number of features and a 

velocity of body parts to distinguish more complex gestures. Finally, the multiclass SVM for 

time-varying data can be improved by using incremental learning. 
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