• Title/Summary/Keyword: spatial finite element model

Search Result 153, Processing Time 0.02 seconds

Development of Integrated Design System for Space Frame Structures (스페이스프레임 구조물의 통합설계시스템 개발)

  • Lee, Ju-Young;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.1 no.2 s.2
    • /
    • pp.59-66
    • /
    • 2001
  • This paper describes three modules for development of the Space Frame Integrated Design System(SFIDS). The Control Module is implemented to control the developed system. The Model Generation Module based on PATRAN user interface enables users to generate a complicated finite element model for space frame structures. The Optimum Design Module base on a branch of combinatorial optimization techniques which can realize the optimization of a structure having a large number of members designs optimum members of a space frame after evaluating analysis results. The Control Module and the Model Generation Module Is implemented by PATRAN Command Language(PCL) while C++ language is used in the Optimum Design Module. The core of the system is PATRAN database, in which the Model Generation Module creates information of a finite element model. Then, PATRAN creates Input files needed for the analysis program from the information of the finite element model in the database, and in turn, imports output results of analysis program to the database. Finally, the Optimum Design Module processes member grouping of a space frame based on the output results, and performs optimal member selection of a space frame. This process is repeated until the desired optimum structural members are obtained.

  • PDF

Vector form intrinsic finite-element analysis of static and dynamic behavior of deep-sea flexible pipe

  • Wu, Han;Zeng, Xiaohui;Xiao, Jianyu;Yu, Yang;Dai, Xin;Yu, Jianxing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.376-386
    • /
    • 2020
  • The aim of this study was to develop a new efficient strategy that uses the Vector form Intrinsic Finite-element (VFIFE) method to conduct the static and dynamic analyses of marine pipes. Nonlinear problems, such as large displacement, small strain, and contact and collision, can be analyzed using a unified calculation process in the VFIFE method according to the fundamental theories of point value description, path element, and reverse motion. This method enables analysis without the need to integrate the stiffness matrix of the structure, because only motion equations of particles established according to Newton's second law are required. These characteristics of the VFIFE facilitate the modeling and computation efficiencies in analyzing the nonlinear dynamic problem of flexible pipe with large deflections. In this study, a three-dimensional (3-D) dynamical model based on 3-D beam element was established according to the VFIFE method. The deep-sea flexible pipe was described by a set of spatial mass particles linked by 3-D beam element. The motion and configuration of the pipe are determined by these spatial particles. Based on this model, a simulation procedure to predict the 3-D dynamical behavior of flexible pipe was developed and verified. It was found that the spatial configuration and static internal force of the mining pipe can be obtained by calculating the stationary state of pipe motion. Using this simulation procedure, an analysis was conducted on the static and dynamic behaviors of the flexible mining pipe based on a 1000-m sea trial system. The results of the analysis proved that the VFIFE method can be efficiently applied to the static and dynamic analyses of marine pipes.

Bond-slip Effect of Reinforced Concrete Building Structure under Seismic Load using Finite Element Analysis (유한요소해석을 활용한 지진하중에 대한 철근콘크리트 건축물의 부착성능 효과 연구)

  • Kim, Yeeun;Kim, Hyewon;Shin, Jiuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.99-107
    • /
    • 2022
  • Existing reinforced concrete building structures constructed before 1988 have seismically-deficient reinforcing details, which can lead to the premature failure of the columns and beam-column joints. The premature failure was resulted from the inadequate bonding performance between the reinforcing bars and surrounding concrete on the main structural elements. This paper aims to quantify the bond-slip effect on the dynamic responses of reinforced concrete frame models using finite element analyses. The bond-slip behavior was modeled using an one-dimensional slide line model in LS-DYNA. The bond-slip models were varied with the bonding conditions and failure modes, and implemented to the well-validated finite element models. The dynamic responses of the frame models with the several bonding conditions were compared to the validated models reproducing the actual behavior. It verifies that the bond-slip effects significantly affected the dynamic responses of the reinforced concrete building structures.

Development of Finite Element Model for Dynamic Characteristics of MEMS Piezo Actuator in Consideration of Semiconductor Process (반도체 공정을 고려한 유한요소해석에 의한 MEMS 압전 작동기의 동특성 해석)

  • Kim, Dong Woohn;Song, Jonghyeong;An, Seungdo;Woo, Kisuk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.454-459
    • /
    • 2013
  • For the purpose of rapid development and superior design quality assurance, sophisticated finite element model for SOM(Spatial Optical Modulator) piezo actuator of MOEMS device has been developed and evaluated for the accuracy of dynamics and residual stress analysis. Parametric finite element model is constructed using ANSYS APDL language to increase the design and analysis performance. Geometric dimensions, mechanical material properties for each thin film layer are input parameters of FE model and residual stresses in all thin film layers are simulated by thermal expansion method with psedu process temperature. $6^{th}$ mask design samples are manufactured and $1^{st}$ natural frequency and 10V PZT driving displacement are measured with LDV. The results of experiment are compared with those of the simulation and validate the good agreement in $1^{st}$ natural frequency within 5% error. But large error over 30% occurred in 10V PZT driving displacement because of insufficient PZT constant $d_{31}$ measurement technology.

  • PDF

Geometric Detail Suppression for the Generation of Efficient Finite Elements (효율적 유한요소 생성을 위한 미소 기하 특징 소거)

  • 이용구;이건우
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.175-185
    • /
    • 1997
  • Given the widespread use of the Finite Element Method in strength analysis, automatic mesh generation is an important component in the computer-aided design of parts and assemblies. For a given resolution of geometric accuracy, the purpose of mesh generators is to discretize the continuous model of a part within this error limit. Sticking to this condition often produces many small elements around small features in spite that these regions are usually of little interest and computer resources are thus wasted. Therefore, it is desirable to selectively suppress small features from the model before discretization. This can be achieved by low-pass filtering a CAD model. A spatial function of one dimension higher than the model of interest is represented using the Fourier basis functions and the region where the function yields a value greater than a prescribed value is considered as the extent of a shape. Subsequently, the spatial function is low-pass filtered, yielding a shape without the small features. As an undesirable effect to this operation, all sharp corners are rounded. Preservation of sharp corners is important since stress concentrations might occur there. This is why the LPF (low-pass filtered) model can not be directly used. Instead, the distances of the boundary elements of the original shape from the LPF model are calculated and those that are far from the LPF model are identified and removed. It is shown that the number of mesh elements generated on the simplified model is much less than that of the original model.

  • PDF

Analysis of Cold-Formed Steel Beams Considering Local Buckling and Lateral Buckling (국부좌굴과 횡좌굴을 고려한 냉간성형 ㄷ 형강보의 해석)

  • Jeon, Jae-Man;Lee, Jae-Hong
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.77-86
    • /
    • 2006
  • The stress analysis of cold-formed channel section steel beams under transverse load is presented. The local buckling as well as the lateral buckling effects are included in the analysis. The analytical model is developed based on the thin-walled beam theory, and a one-dimensional finite element model is formulated to solve the analytical model. Numerical results are compared with AISI code. It shows that the proposed model is appropriate for predicting of stress as well as deflection of the cold-formed channel section beam.

  • PDF

Experiment of ENTA Hysteretic Damper and Verification of Seismic Performance Through Finite Element Analysis (ENTA이력댐퍼의 실험과 유한 요소 해석을 통한 내진 성능 검증)

  • Lee, Hong-Seok;Hwang, Jung-Hyun;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.1
    • /
    • pp.79-86
    • /
    • 2020
  • The performance enhancement of various damping systems from natural hazards has become an highly important issue in engineering field. In this paper, ENTA hysteretic dampers were tested under cyclic loadings to evaluate their performance in terms of ductility and energy dissipation. The test results showed that the hysteretic dampers are effective damping systems to enhance the buildings performance for remodeling and retrofit of buildings. Also, the hysteretic dampers were modeled in FEM(Finite Element Method) structural analysis program. As comparing the computer modeling and the experiment, this study model reflects the nonlinear behavior of steel and derives the hysteresis loop.

Application of Equivalent Walking Loads for Efficient Analysis of Floor Vibration Induced by Walking

  • Kim, Gee-Cheol;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.4 s.14
    • /
    • pp.65-76
    • /
    • 2004
  • Walking loads are usually considered as nodal loads in the finite element vibration analysis of structures subjected to walking loads. Since most of the walking loads act on elements not nodes, the walking loads applied on the elements should be converted to the equivalent nodal walking loads. This paper begins with measuring walking loads by using a force plate equipped with load cells and investigates the characteristics of the walking loads with various walking rates. It is found that the walking loads are more affected by walking rates than other parameters such as pedestrian weight, type of footwear, surface condition of floor etc. The measured walking loads are used as input loads for a finite element model of walking induced vibration. Finally, this paper proposes the equivalent nodal walking loads that are converted from the walking loads acting on elements based on finite element shape functions. And the proposed equivalent walking loads are proved to be applicable for efficient analysis of floor vibration induced by walking loads.

  • PDF

Transient heat transfer of unidirectional (1D) and multidirectional (2D/3D) functionally graded panels

  • Samarjeet Kumar;Vishesh Ranjan Kar
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.587-602
    • /
    • 2023
  • This article presents the numerical modelling of transient heat transfer in highly heterogeneous composite materials where the thermal conductivity, specific heat and density are assumed to be directional-dependent. This article uses a coupled finite element-finite difference scheme to perform the transient heat transfer analysis of unidirectional (1D) and multidirectional (2D/3D) functionally graded composite panels. Here, 1D/2D/3D functionally graded structures are subjected to nonuniform heat source and inhomogeneous boundary conditions. Here, the multidirectional functionally graded materials are modelled by varying material properties in individual or in-combination of spatial directions. Here, fully spatial-dependent material properties are evaluated using Voigt's micromechanics scheme via multivariable power-law functions. The weak form is obtained through the Galerkin method and solved further via the element-space and time-step discretisation through the 2D-isoparametric finite element and the implicit backward finite difference schemes, respectively. The present model is verified by comparing it with the previously reported results and the commercially available finite element tool. The numerous illustrations confirm the significance of boundary conditions and material heterogeneity on the transient temperature responses of 1D/2D/3D functionally graded panels.

Application of Storm Runoff Model on Small Watershed by Finite Element Method (유한요소법에 의한 소유역 유출모형의 적용)

  • 최진규;손재권
    • Water for future
    • /
    • v.25 no.3
    • /
    • pp.97-104
    • /
    • 1992
  • The distributed hydrologic models are widely applied to estimate the storm-runoff with spatial variability in watershed characteristics and rainfall pattern. This study was aimed to introduce the event-oriented storm runoff model using finite element method, and to try it's applicability on small watershed. Yeonwha watershed was selected and 14 storm events in 1991 were used for the finite element model, and the simulation results were compared with hydrologic quantities.

  • PDF