• Title/Summary/Keyword: spatial data structure

Search Result 822, Processing Time 0.03 seconds

Spatial Correlations of Brain fMRI data

  • Choi Kyungmee
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.1
    • /
    • pp.241-252
    • /
    • 2005
  • In this study we suggest that the spatial correlation structure of the brain fMRI data be used to characterize the functional connectivity of the brain. For some concussion and recovery data, we examine how the correlation structure changes from one step to another in the data analyses, which will allow us to see the effect of each analysis to the spatial correlation or the functional connectivity of the brain. This will lead us to spot the processes which cause significant changes in the spatial correlation structure of the brain. We discuss whether or not we can decompose correlation matrices in terms of its causes of variations in the data.

Analysis of Spatial Structures and Central Places of Gwangju and Jeonnam Region using Social Network Analysis (사회네트워크 분석을 이용한 광주 전남지역의 공간 구조 변화 및 중심지 분석)

  • Lee, Jimin
    • Journal of Korean Society of Rural Planning
    • /
    • v.23 no.2
    • /
    • pp.43-54
    • /
    • 2017
  • When an age of low growth and population decline, population migration plays an important role in spatial structure of region. There have been many researches on migration and regional spatial structure. The purpose of this study is to examine the changes of Gwangju and Jeonnam region's spatial structure and central area using social network analysis methods. For analysis it was used that population and migration data and passenger OD(Origin and Destination) travel data released by Statistics Korea and Korea Transport Database(KTDB). Using Gephi 0.8.2, migration and passenger OD networks were visualized, and this describe network flow and density. The results of the network centrality analysis show that the most populated village is not always network center though population mass is an important factor of central places. The average eigenvector centrality of 2010 migration is the lowest during 2005-2015, and it means few regions have high centralities. When comparing migration and travel networks, travel data is more effective than migration data in determining the central location considering spatial functions.

Comparative Analysis of 3D Spatial Data Models (3차원 공간정보 데이터 모델 비교 분석)

  • Park, Se-Ho;Lee, Ji-Yeong
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.277-285
    • /
    • 2009
  • Each system should have a suitable data model about their purpose for efficiently managing, analyzing, and manipulating data. And the usable range of application is determined by the data model, and suitable data models are being developed for each application. In GIS, diversity spatial data model is being developed too. The accuracy and update of the spatial data would be important for applying efficient application as well as the data modeling is important as constructing the spatial data structure. Therefore, the purposes of this research are to 1)compare domestic spatial data models with oversea spatial data models about their geometry model, topology model and visualizing method of 3D spatial data 2)to compare the features of the data model by analyzing each data structures. We 3)compare and analyze features of each spatial data models via the quantitative analysis of each spatial data models.

  • PDF

Detection of Hotspots on Multivariate Spatial Data

  • Moon, Sung-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.17 no.4
    • /
    • pp.1181-1190
    • /
    • 2006
  • Statistical analyses for spatial data are important features for various types of fields. Spatial data are taken at specific locations or within specific regions and their relative positions are recorded. Lattice data are synoptic observation covering an entire spatial region, like cancer rates corresponding to each county in a state. Until now, the echelon analysis has been applied only to univariate spatial data. As a result, it is impossible to detect the hotspots on the multivariate spatial data In this paper, we expand the spatial data to time series structure. And then we analyze them on the time space and detect the hotspots. Echelon dendrogram has been made by piling up each multivariate spatial data to bring time spatial data. We perform the structural analysis of temporal spatial data.

  • PDF

SQMR-tree: An Efficient Hybrid Index Structure for Large Spatial Data (SQMR-tree: 대용량 공간 데이타를 위한 효율적인 하이브리드 인덱스 구조)

  • Shin, In-Su;Kim, Joung-Joon;Kang, Hong-Koo;Han, Ki-Joon
    • Spatial Information Research
    • /
    • v.19 no.4
    • /
    • pp.45-54
    • /
    • 2011
  • In this paper, we propose a hybrid index structure, called the SQMR-tree(Spatial Quad MR-tree) that can process spatial data efficiently by combining advantages of the MR-tree and the SQR-tree. The MR-tree is an extended R-tree using a mapping tree to access directly to leaf nodes of the R-tree and the SQR-tree is a combination of the SQ-tree(Spatial Quad-tree) which is an extended Quad-tree to process spatial objects with non-zero area and the R-tree which actually stores spatial objects and are associated with each leaf node of the SQ-tree. The SQMR-tree consists of the SQR-tree as the base structure and the mapping trees associated with each R-tree of the SQR-tree. Therefore, because spatial objects are distributedly inserted into several R-trees and only R-trees intersected with the query area are accessed to process spatial queries like the SQR-tree, the query processing cost of the SQMR-tree can be reduced. Moreover, the search performance of the SQMR-tree is improved by using the mapping trees to access directly to leaf nodes of the R-tree without tree traversal like the MR-tree. Finally, we proved superiority of the SQMR-tree through experiments.

Mining Frequent Pattern from Large Spatial Data (대용량 공간 데이터로 부터 빈발 패턴 마이닝)

  • Lee, Dong-Gyu;Yi, Gyeong-Min;Jung, Suk-Ho;Lee, Seong-Ho;Ryu, Keun-Ho
    • Journal of Korea Spatial Information System Society
    • /
    • v.12 no.1
    • /
    • pp.49-56
    • /
    • 2010
  • Many researches of frequent pattern mining technique for detecting unknown patterns on spatial data have studied actively. Existing data structures have classified into tree-structure and array-structure, and those structures show the weakness of performance on dense or sparse data. Since spatial data have obtained the characteristics of dense and sparse patterns, it is important for us to mine quickly dense and sparse patterns using only single algorithm. In this paper, we propose novel data structure as compressed patricia frequent pattern tree and frequent pattern mining algorithm based on proposed data structure which can detect frequent patterns quickly in terms of both dense and sparse frequent patterns mining. In our experimental result, proposed algorithm proves about 10 times faster than existing FP-Growth algorithm on both dense and sparse data.

A Study on Type and Spatial Sense of Contemporary Architecture Integrated Structure and Skin - Focused on Contemporary Architecture case after 2000 years - (구조와 표피가 일체화된 현대건축의 유형과 공간감에 관한 연구 - 2000년 이후 건축사례를 중심으로 -)

  • Lee, Sang-Ho;Ban, Ja-Yuen
    • Korean Institute of Interior Design Journal
    • /
    • v.26 no.1
    • /
    • pp.83-90
    • /
    • 2017
  • The purpose of this study is to investigate the possibilities of architectural planning and expression of the relationship between structure and skin in contemporary architecture. For this purpose, we show interior space images -integration of structure and skin architecture- to students and experts of the related majors, and let them mark their feeling on the questionnaire composed spatial expression vocabulary extracted through the literature study on spatial sensibility, and analysis data. As a result, in contemporary architecture where the structure and the skin are integrated, form elements have a stronger influence on formation of space sense than elements of light and size, and aesthetics, characteristic, and temporality are common in the inner space, Three types of four types showed unique characteristics, and it was confirmed that there is a causal relationship between the spatial feeling factor and the spatial feeling. This means that the relationship between the structure and the skin can be considered as a planning factor, and this study is expected to be used as such basic data.

Design of Spatial Query Language for GEO Millennium Server TM

  • Zhaohong Liu;Kim, Sung-Hee;Oh, Young-Hwan;Bae, Hae-young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.10a
    • /
    • pp.113-115
    • /
    • 2000
  • A GIS software GEO Millennium SystemTM has been developed to integrated with spatial database that combines conventional and spatially related data. As we known well the standard query language lacks the support of spatial data type and predicate, and can not serve as the query language in the spatial database directly; some extended strategies have been proposed, but some of them need their own storage manager, some introfuce new clause into the SELECT-FROM-WHERE structure, and some is very complex and available to us. So we designed our own query language on the conventional storage manager system. It supports the Spatial Data Type and predicate, and provides the full query capabilities of SQL on the non-spatial part of the database while being tightly integrated with the spatial part, without changing the standard SQL structure.

  • PDF

Organizing Lidar Data Based on Octree Structure

  • Wang, Miao;Tseng, Yi-Hsing
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.150-152
    • /
    • 2003
  • Laser scanned lidar data record 3D surface information in detail. Exploring valuable spatial information from lidar data is a prerequisite task for its applications, such as DEM generation and 3D building model reconstruction. However, the inherent spatial information is implicit in the abundant, densely and randomly distributed point cloud. This paper proposes a novel method to organize point cloud data, so that further analysis or feature extraction can proceed based on a well organized data model. The principle of the proposed algorithm is to segment point cloud into 3D planes. A split and merge segmentation based on the octree structure is developed for the implementation. Some practical airborne and ground lidar data are tested for demonstration and discussion. We expect this data organization could provide a stepping stone for extracting spatial information from lidar data.

  • PDF

Categorical Data Analysis by Means of Echelon Analysis with Spatial Scan Statistics

  • Moon, Sung-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.15 no.1
    • /
    • pp.83-94
    • /
    • 2004
  • In this study we analyze categorical data by means of spatial statistics and echelon analysis. To do this, we first determine the hierarchical structure of a given contingency table by using echelon dendrogram then, we detect candidates of hotspots given as the top echelon in the dendrogram. Next, we evaluate spatial scan statistics for the zones of significantly high or low rates based on the likelihood ratio. Finally, we detect hotspots of any size and shape based on spatial scan statistics.

  • PDF