20004E $FRRAN 7H HEUFE

7
w

4 Vol. 27. No. 2

Design of Spatial Query Language for

GEO Millennium Server™

*Zhaohong Liu, Sung-Hee Kim, Young-Hwan Oh, Hae-young Bae
Dept. of Computer Sci. & Eng., Inha Univ., Inchon, 402-751, Korea
*macromliu@hotmail.com

Abstract

A GIS software GEO Millennium System ™ has been developed to integrated with spatial database that combines
conventional and spatially related data. As we known well the standard query language lacks the support of spatial data
type and predicate, and can not serve as the query language in the spatial database directly; some extended strategies have
been proposed, but some of them need their own storage manager, some introduce new clause into the SELECT-FROM-
WHERE structure, and some is very complex and available to us. So we designed our own query language on the
conventional storage manager system. It supports the Spatial Data Type and predicate, and provides the full query
capabilities of SQL on the non-spatial part of the database while being tightly integrated with the spatial part, without

changing the standard SQL structure.

1. Introduction

Data intensive geographic applications such as cartography,
urban planning, and natural resource management are build by
GISs. GISs are database systems that allow the manipulation,
storage, and retrieval of geographic data and the display of data
in the form of maps. The spatial DBMS provides the underlying
database technology for GISs and other applications. Spatial
DBMS (i) is a database system; (ii) offers spatial data types
(SDT) in its data model and query language; (iii) supports
spatial data types in its implementation, providing at least
spatial indexing and efficient algorithms for spatial join. [7]

We adopted a conventional storage manger system to store
the data. It only supports the traditional atomic data type. The
relational language (SQL) forms a suitable base to develop
spatial extensions, but it cannot support for spatial data type and
predicate. So we must do some work to implement our own
spatial query language that supports both spatial data type and
spatial data manipulation.

Section 2 gives an introduction about the project “GEO
Millennium System ™%, Section 3 presents the features of
spatial data, the available ways, and principle for spatial query
language, the advantages and drawbacks of these methods and
our design of the spatial query language. Section 4 dates some
conclusions.

2. Introduction of the GEO Millennium

System ™ .

We adopted the conventional Client/Server model in the GEO
Millennium System ™. It is composed with GEO Millennium
Server ™ and GEO Millennium Client ™ [Figure 1].

The GEO Millennium Client ™ provides the GUI (Graphics
User Interface). It is composed of Communication Module,
Cache management, Local Query Processor, Drawing Module
and User Interface Module.

The GEO Millennium Server ™ is the system’s server
program, it responses for storing and managing the spatial and
non-spatial data in a DBMS, provides computing function, and
serves multi-client at the same time. The GAPE (Geo-spatial
API Processing Engine) provides API function for the client,
translates the packet format received from user into database
query, and manages the spatial data schema and user. The QPE
(Query Processing Engine) parses the queries received from

+
GEO Millennium System ™, GEO Millennium Server ™ and GEO

Millennium Client ™ is the registed trademark of GEOMania Co. Ltd.
and DB Lab. Inha Univ. KOREA

113

r Gaer]

User_Interface Mdule

Cache | Local Query | Drawing
momt | Processor | Module

Communi cation Nodul &

GEQ/M 11 enni um
*cliant

Server Moduls
PE)

Communi cation Mbdul e
APL (@A

Schema
mgmt

User
momt

saL
generator

GEO/Millennium
server

Execulor g
Storage Mor inlerf

[Concurrency Controt
I Rocovery Mgmt
Buffer Mgmt

MIDAS Storage
manager

ey T
non-spatial Data

Figure 1: Arcbitecture

GAPE, executes it using the interface supported by MiDAS-IIIL.
In the GEO Millennium Server ™, it uses the spatial query
language supporting spatial operation, which is extended from
basic SQL, and supports intersect, disjoint, contain, equal, touch,
cross and overlap etc. spatial operators.

3. The Spatial Query Language

In this section, we firstly give a brief introduction of the
GIS/Spatial DBMS, SQL; secondly, the features of the spatial
data and spatial predicates; thirdly, the available way presented
to solve the problem, and the advantage and shortcomings; fifth,
the requirements of the extended SQL; Iastly, our own spatial
query language solution methods also be introduced.

The first generation of GIS was built directly on file systems
and did not offer the benefits of DMBS such as high-level data
definition, flexible querying, transaction management, etc.
When DBMS technology and in particular, relational systems
[1], in which security and backup and recovery are well proven
become available, attempts were made to use them as a basis
and take the advantages.

SQL was originally designed as the query for System R [1],
the IBM’s relational DBMS. The structure of an SQL query is
the SELECT-FORM-WHERE clauses. The large availability on
the market place of the relation database technology is the major
reason why an SQL-based spatial query language is welcome
both from the GIS vendors and the GIS user community.

The traditional alphanumeric data, such as integer, real,
character and string is the simplest data, it can be easily written

200045 =4 ues 7+ et EETy Vol. 27. No. 2

in the SQL sentence. But in the spatial system, the fundamental
abstractions are point, line, and region [7]. A point represents
(the geometric aspect of) an object for which only its location in
space, but not its extent, is relevant. A line (in this context
always understood to mean a curve in space, usually represented
by a polyline, a sequence of line segments) is the basic
abstraction for facilities for moving through space, or
connections in space (e.g., roads, rivers, cable for phone,
electricity). A region is the abstraction for something having an
extent in 2-D space (e.g., country, lake, or national park).

Some important issues related to spatial data types are
following:
= Extensibility
= Completeness
= One or more type? Is it really necessary to have several

different types to distinguish? We choose several types, it
allow a more precise application of operations.
= Set operations. [7]

Base on these principles, we adopt the point, line, polyline,
ring, rectangle, roundrect, circle, ellipse, and polygon as the
atomic spatial data type, and another one MBR (Minimum
Boundary Rectangle) is also been introduced.

Among the operations offered by spatial algebras, spatial
relationships are the most important. The spatial relationship
can be distinguished several classes [7].
= Topological relationship, such as adjacent, inside, and
disjoint

Direction relationship, for example, above, below, or
north_of, southwest_of.

= Metric relationships, for example, “distance < 100.”

Eight of these are not valid, and two of them are symmetric
so that six different relationships result, called disjoint, in, touch,
equal, cover, and overlap. And for easy use we adopt 7 called
intersect, disjoint, contain, equal, touch, cross and overlap, and
another very important predicate window which was used in the
window query.

Recently several spatial extensions to standard SQL have
been proposed to turn SQL into a spatial query language In all
such extensions, the motivation to adopt SQL as the backbone
for a spatial query language was based on the recognition of the
efforts to standardize SQL as the database query language.

Extensions to make SQL usable within Spatial DBMS must
include: (i) spatial data type, (ii) spatial operators predicates,
and (iii) support for both textual and graphical presentation of
query results [6]. It is a very good idea, but the integration of the
graphical presentation into the query language would make each
user unnecessatily complex and long. In (8], the Constraint SQL
is based on the constraint database. Some other extended way
extended query language has been an incomplete
implementation of the ANSI standard [2], and, furthermore, the
spatial extensions were fairly minimal and elementary. To make
matters worse, often the extensions do not maintain consistent
syntactic and semantic constructs with the rest of standard SQL.
For example, spatial predicates are not in general supported
within the WHERE clauses, but rather within a separate clause
[4].

In the context of spatial database, a query language must be
seen as broader than only a solution to the retrieval of data. The
standard structure of SQL with the SELECT-FROM-WHERE
block is already considered to be compiex enough to us. But it
only well suited to treat alphanumeric dat, it do not reflect the
properties of spatial data. A bellowing, we list the set of basic
features [4].

1.A spatial abstract data type. A spatial data type is
necessary so that the users may treat spatial data at a level
of abstraction independent from the internal coding,.

114

2.8patial selection criteria and selection by pointing. The
user needs to select data to be retrieved not only based on
predicates over attributes values (e.g., the standard query
“select all professors older than 50 years”), but also based
on spatial properties (e.g., “select all parcels within 100
meters of a lake”). Hence, a spatial query language must
allow predicates to select data based on relationship of
spatial objects.
Three fundamental categories of queries can be distinguished
in a spatial DBMS:
= Queries about non-spatial properties; e.g., “How many
people do they live in Rome?”

= Queries about spatial properties; e.g., “query all towns near
by lake Ontario™;

» Queries which combines spatial and non-spatial properties;
€.g., “Query all the parcels adjacent to the parcel located at
25 College Street.”

It is crucial, for spatial query language, to syntactically
support these three categories of queries. Traditional query
provides a solution for the formulation of non-spatial queries.
So the spatial extension to a non-spatial language must preserve
all its alphanumeric functionality to allow the user to pose non-
spatial queries easily. And we do not integrate the display
description into the query language, or it would make the query
complex and long. ’

The following concepts of standard SQL were specifically
regarded:
» The SELECT-FROM-WHERE construct is the framework
of every query;
» Predicates in the WHERE clause are formulated upon
attributes or tables (only for the spatial predicates);
+ Every query result is a relation.
We adopt the Purdue Compiler Construction Tool Set
(PCCTS)[9] as our parser tools. And in the following the given
grammar is using the grammar.

1) Spatial Data Type Definition

In the GEO Millennium Server ™, based on the
extensibility and completeness principle said before, we
consider the POINT, LINE, POLYLINE, RING, RECT,
ROUNDRECT, CIRCLE, ELLIPSE, and POLYGON as the
atomic data type. It is very clear in the CRATE TABLE
sentence.

Here is the CREATE TABLE SQL’s grammar.

sqlCreateTableStmt :

CREATE TABLE tablename LBRACE

newfielditem (COMMA newfielditem)* RBRACE ;
newfielditem :

newfieldname fieldType {PRIMARY KEY { INDEX KEY};
fieldType :

((CHAR LMBRAC IntNum RMBRAC)

|VCHAR |INT |LONG |DOUBLE |MBR
|POINT |[LINE |POLYLINE|RING |RECTANGLE
| ROUNDRECT |CIRCLE | ELLIPSE | POLYGON)

In these data type, except the MBR have a fixed length, the
other spatial data type POINT, LINE, POLYLINE, RING,
RECT, ROUNDRECT, CIRCLE and ELLIPSE are a set of
point, and a point has the structure like (double, double), the
length is variable, we adopt the LIST type supported by the
storage manager to store it. The MBR that has the structure like
(long, long, long, long), we store it as char [32].

2) The solution of the spatial SQL

20009 ¥R RAE3] 72 U E=FA Vol. 27. No. 2

Predicate should be provided to manipulate the data. The
projection, of course, the related operator must be provided. In
the parser party, the parser of the INSERT, SELECT, UPDATE,
DELETE should be modified. The method deal with the
WHERE clause of the SELECT, UPDADTE, DELETE.

As we have referred previously, we’ve supported the SDT,
and the related predicates INTERSECT DISJOINT CONTAIN
EQUAL TOUCH CROSS OVERLAP and WINDOW must
been supported also. We do not introduce new clause as some
old method, just merge all the predicates into the where clause
in the SELECT-FROM-WHERE style.

Here we only give out the grammar for SELECT command.

sqlSelectStmt :
SELECT (TIMES | (selectitems (COMMA selectltems)*))
FROM (tablename (COMMA tablename)*)
{WHERE sgiMultiPredicate };

selectltemns :

OID| (stringidentify {PERIOD(stringidentify | OID)});
sqiMultiPredicate : sqlORExpr (OR sqlORExpr)*;
sqlORExpr : sqIANDExpr (AND sqlANDExpr)*;
sqIANDExpr : ((NOT)* sqINOTExpr) ; .

sqINOTExpr :
(LBRACE sqIMultiPredicate RBRACE)
| sqlSinglePredicate ;
sqlSinglePredicate :
((INTERSECT | DISJOINT | CONTAIN | EQUAL
| TOUCH | CROSS | OVERLAP) LBRACE

((stringidentify {PERIOD LMBRAC IntNum
COMMA IntNum COMMA IntNum RMBRAC })
| (LMBRAC IntNum COMMA IntNum COMMA
IntNum RMBRAC))
COMMA stringidentify RBRACE)
| ((OID LBRACE IntNum COMMA IntNum
COMMA IntNum RBRACE))
| (WINDOW LMBRAC (IntNum |RealNum)
COMMA (IntNum | RealNum)
COMMA (IntNum | RealNum)
COMMA (IntNum | RealNum) RMBRAC)
| // normal predicate and table.OID
(stringidentify
(((EQ | GT| GE|LT|NE) sqiTerm)
| PERIOD ((OID LBRACE IntNum COMMA
IntNum COMMA IntNum RBRACE)
| (stingidentify (EQ | GT | GE | LT | NE) sqiTerm))
»

The OID (Object Identifier) has a special usage, when it is
used in the sqiSelectltems, it means return the Object Identifier
number of the record, when it is used in the following condition:
the object data has been cached in the client side, we do not
need retransfer the data itself from the server, it’s only
necessary require the OID, this strategy can reduce the
transferred data size between server and client. In the where
clause, it refer to a record which stored a geometry, it is
different with the conventional data type, first, we read the
record from the table, it contain a MBR field, and the object
itself, then we use the select-refine two phase strategy to
retrieve the query result.

We consider the entire spatial predicate into the where
clause, including the WINDOW predicate, so we can deal with it
as same as the alphanumeric predicate, and in the Normalization
phrase, we adopted the Conjunction Normalization algorithm.

Conjunction Normalization Algorithm:

115

CNF_normalizer(BinaryTree* p_tree){
if p_tree is a terminal node
return a AND node pointing to an OR node, and attach
the terminal node to the OR node;
else {
left = CNF_normalizer(p_tree’s left subtree);
right = CNF_normalizer(p_tree’s right subtree);
switch the intermediate node’s type: {
case AND:
return CNF_and_merge(left, right); // plus
case OR:
return CNF_or_merge(left, right); // multiply
b
}

After the condition was normalized, we can retrieve it from
the storage manager system using the provided interface. Of
course we can optimize access path, and reduce the unnecessary
Cartesian.

4. Conclusions and Future Research

In this paper, we’ve discussed the implemented nsﬂpatial
query language used in the GEO Millennium Server . We
proposed the methods and principles for spatial query language,
extended SQL, and also their advantages and shortcomings. We
observe their advantages, at the same time avoiding the
drawbacks such as complex to use and the syntactic and
semantic violation with the standard SQL, at last, we
implemented our own spatial query language used in the GEO
Millennium Server ™, which has the full query capabilities of
SQL on the non-spatial part of the database while being tightly
integrated with the spatial part, and store the spatial data in the
conventional storage manager.

About the future research, we’ll support more useful
functions and predicates, and apply the optimization to it.

REFERENCES

[1] M. Astrahan et al., “System R: A Relational Approach to
Data Base Management”, ACM TODS, pp.97-137, 1976

f2] CJ.Date, “A Guide to the SQL Standard”, Addison-
Wesley, Reading, Mass., 1989.

[3] M.J. Egenhofer. “Spatial SQL: A Query and Presentation
Language”. IEEE TKDE, 6(1): pp.86-95, 1994.

[4] M.J. Egenhofer and A.U. Frank. “Towards a Spatial Query
Language: User Interface Considerations”, Proc. 14th Conf.
On VLDB, pp.124-133, Los Angeles, CA, Aug.1988

[5] Martin Erwing & Markus Scheider. “Development in
Spatial-temporal Query Language”. 1999

[6] Paolino Di Felice etc. “Towards a Standard for SQL-Based
Spatial Query Language”, ACM pp.184-189, 1992.

[7] Ralf Hartmut Guting, “An Introduction to Spatial
Database Systems”, VLDB Vol.3 No.4, pp.357-399, 1994.

[8] Gabbriel Kuper etc., “A Constraint-based Spatial Extension
to SQL”, ACM GIS’98 Washington, pp.112-117, 1998.

[9] Terence John Parr. “Language Translation Using PCCTS
and C++ A reference guide”. Automata Publishing
Company, San Jose, CA 95129.

[10]N.Roussopoulos and D.Leifker, “Direct Spatial Search on
Pictorial Database Using Packed R-Trees”, Proc. Int. Conf.
On Management of Data, SIGMOD, pp.17-31, 1985

