• Title/Summary/Keyword: spatial/temporal resolution

Search Result 425, Processing Time 0.028 seconds

A Mobile Emission Laboratory for Car Chasing Experiment (차량 추적을 위한 이동형 자동차 배출가스 측정시스템(MEL) 구축)

  • Lee, Seok-Hwan;Kim, Hong-Seok;Lee, Seung-Jae;Bae, Gwi-Nam
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.109-116
    • /
    • 2011
  • To measure the traffic pollutants with high temporal and spatial resolution under real conditions a mobile emission laboratory (MEL) was designed and built in KIST with close-cooperation with KIMM and Yonsei university. The equipment of the mini-van provides gas phase measurements of CO, NOx, $CO_2$, THC (Total hydrocarbon) and number density & size distribution measurements of fine and ultra-fine particles by a fast mobility particle sizer (FMPS) and a condensation particle counter (CPC). The inlet sampling port above the bumper enables the chasing of different type of vehicles. This paper introduces the construction and technical details of the MEL and presents data from the car chasing experiment of diesel and CNG city bus. The dilution ratio was increased rapidly according to the chasing distance. Most particles from the diesel city bus were counted under 300 nm and the peak concentration of the particles was located between 40-60 nm. However, the most particles from the CNG city bus were nano particle counted under 50 nm.

A Numerical Study of Heat and Mass Transfer Model of LII for Nanoscale Soot Particles (나노크기의 매연입자에 대한 LII의 열-물질 전달 모델에 관한 수치적 연구)

  • Kim, Gyu-Bo;Shim, Jae-Young;Chang, Young-June;Jeon, Chung-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.7 s.262
    • /
    • pp.596-603
    • /
    • 2007
  • As increasing interest for soot emission. etc in combustion systems, various studies are being carried out for the reduction and measurement techniques of soot. Especially, laser induced incandescence is the useful measurement technique which has distinguished spatial and temporal resolution for primary particle size, volume fraction and aggregated particle size etc. Time resolved laser induced incandescence is the technique for measuring primary particle size that is decided to solve the signal decay rate which is related to the cooling behavior of heated particle by pulsed laser. The cooling behavior of heated particle is able to represent the heat and mass transfer model which are involved constants of soot property for surround gas temperature on the our previous work. In this study, it is applied to the time-dependence thermodynamic properties for soot temperature instead of constants of soot property for surround gas temperature and compared two different model results.

Trend Analysis of Wildland Fires and Their Impacts on Atmospheric Environment over East Asia

  • Shin, Sung-Kyun;Lee, Kwon-Ho
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.1
    • /
    • pp.22-31
    • /
    • 2016
  • Active fire products from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observation during the 16 years from 2000-2015 were analyzed to estimate spatial and temporal variations of wildland fires over East Asia (region of interest: $20^{\circ}N-55^{\circ}N$, $100^{\circ}E-150^{\circ}E$). GLOBCOVER 2009 land cover data were also used to investigate the trend in wildfire occurrence with respect to each land cover type. Statistical analysis showed that the highest number of wildland fires occurred in the evergreen and vegetation covered areas, and strong seasonal variations were found in these areas. Total numbers of fires were 283,683 and 202,543, respectively. In particular, the wildland fires in croplands occurred mainly during summer season and distinguishable increasing trends were found. The correlations between number of wildland fires and air pollutants, such as black carbon, organic matter, and carbon monoxide, were also calculated in order to investigate the intensity of the air pollution caused by the wildland fires. Positive correlation between total column carbon monoxide contents and the occurrence of wildland fire was found. In addition, this correlation was higher than the correlation between fire occurrence and black carbon or organic matter. These results indicate that a significant amount of carbon monoxide originated from the wildland fires and influenced the regional atmospheric environment in East Asia.

A Sensitivity Analysis on Numerical Grid Size of a Three-Dimensional Hydrodynamic and Water Quality Model (EFDC) for the Saemangeum Reservoir (새만금호 3차원 수리.수질모델(EFDC)의 수치격자 민감도 분석)

  • Jeon, Ji Hye;Chung, Se Woong
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.1
    • /
    • pp.26-37
    • /
    • 2012
  • Multi-dimensional hydrodynamic and water quality models are widely used to simulate the physical and biogeochemical processes in the surface water systems such as reservoirs and estuaries. Most of the models have adopted the Eulerian grid modeling framework, mainly because it can reasonably simulate physical dynamics and chemical species concentrations throughout the entire model domain. Determining the optimum grid cell size is important when using the Eulerian grid-based three-dimensional water quality models because the characteristics of species are assumed uniform in each of the grid cells and chemical species are represented by concentration (mass per volume). The objective of this study was to examine the effect of grid-size of a three dimensional hydrodynamic and water quality model (EFDC) on hydrodynamics and mass transport in the Saemangeum Reservoir. Three grid resolutions, respectively representing coarse (CG), medium (MG), and fine (FG) grid cell sizes, were used for a sensitivity analysis. The simulation results of numerical tracer showed that the grid resolution affects on the flow path, mass transport, and mixing zone of upstream inflow, and results in a bias of temporal and spatial distribution of the tracer. With the CG, in particular, the model overestimates diffusion in the mixing zone, and fails to identify the gradient of concentrations between the inflow and the ambient water.

Face Detection Using Multi-level Features for Privacy Protection in Large-scale Surveillance Video (대규모 비디오 감시 환경에서 프라이버시 보호를 위한 다중 레벨 특징 기반 얼굴검출 방법에 관한 연구)

  • Lee, Seung Ho;Moon, Jung Ik;Kim, Hyung-Il;Ro, Yong Man
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.11
    • /
    • pp.1268-1280
    • /
    • 2015
  • In video surveillance system, the exposure of a person's face is a serious threat to personal privacy. To protect the personal privacy in large amount of videos, an automatic face detection method is required to locate and mask the person's face. However, in real-world surveillance videos, the effectiveness of existing face detection methods could deteriorate due to large variations in facial appearance (e.g., facial pose, illumination etc.) or degraded face (e.g., occluded face, low-resolution face etc.). This paper proposes a new face detection method based on multi-level facial features. In a video frame, different kinds of spatial features are independently extracted, and analyzed, which could complement each other in the aforementioned challenges. Temporal domain analysis is also exploited to consolidate the proposed method. Experimental results show that, compared to competing methods, the proposed method is able to achieve very high recall rates while maintaining acceptable precision rates.

A Study on NOx Pollutant Reduction and Combustion Characteristics of Impinging-Jet-Flame combustion Process(III) (대향분출염 화염방식에 의한 NOx 생성저감과 연소특성 연구 (III))

  • 최성만;정인석;조경국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.2
    • /
    • pp.11-22
    • /
    • 1996
  • It has been generally accepted that NOx formation increases as the maximum temperature or correspondingly the maximum pressure of a combustion system increases. Recently some exceptional experimental results have been reportes that under certain circumstance NOx formation could be reduced while the maximum pressure was increasing by varying the methods of combustion for the same kind of premixed gases. Until now that kind of results have been acquired only for the case of a dual opposed prechamber. But the mechanism has not been clearly understood yet. 3D computer simulation has been tried to clarify the mechanism. Flor this purpose KIVA-Ⅱ has been modified and applied to the model combustion chamber with which the same kind of experimental works have been done by the authors. A good agreement with the experimental results was achieved with the spatial and temporal resolution which is hard th be obtained by the experimental methods. And it was observed that for the dual opposed prechamber case the time for the NOx formation, which is non-equilibrium reaction, is shorter than any other case by an appropriate mixing process in the main combustion chamber. The shorter time reduceed heat loss through the combustion chamber walls and thereby obtaines the higher maximum pressure.

  • PDF

Terrestrial LiDAR Measurements and Analysis of Topographical Changes on Malipo Beach (지상 LiDAR를 이용한 만리포 해변 정밀 지형측량 및 지형 변화 분석)

  • Shim, Jae-Seol;Kim, Jin-Ah;Park, Han-San;Kim, Seon-Jeong
    • Ocean and Polar Research
    • /
    • v.32 no.1
    • /
    • pp.73-84
    • /
    • 2010
  • A terrestrial LiDAR was used to acquire precise and high-resolution topographical information of Malipo beach, Korea. Terrestrial LiDAR and RTK-DGPS (VRS) were mounted on top of a survey vehicle and used to scan 20 times stop-and-go method with 250 m spacing intervals at ebb tides. In total, 7 measurements were made periodically from 2008 to 2009 and after each beach replenishment event. We carried out GIS-based 3D spatial analysis such as slope and volume calculations in order to assess topographical changes over time. In relation to beach replenishment, comparative analysis of each volume change revealed them to be similar. This result indicates that the terrestrial LiDAR measurements are accurate and can be used to analyze temporal topographical changes. In conclusion, the methodology employed in this study can be used efficiently to exercise coastal management through monitoring and analyzing beach process such as erosion and deposition.

A Retrieval of Vertically-Resolved Asian Dust Concentration from Quartz Channel Measurements of Raman Lidar (라만 라이다의 석영 채널을 이용한 고도별 황사 농도 산출)

  • Noh, Young-Min;Lee, Kwon-Ho;Lee, Han-Lim
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.3
    • /
    • pp.326-336
    • /
    • 2011
  • The Light Detection and Ranging (Lidar) observation provides a specific knowledge of the temporal and vertical distribution and the optical properties of the aerosols. Unlike typical Mie scattering Lidars, which can measure backscattering and depolarization, the Raman Lidar can measure the quartz signal at the ultra violet (360 nm) and the visible (546 nm) wavelengths. In this work, we developed a method for estimating mineral quartz concentration immersed in Asian dust using Raman scattering of quartz (silicon dioxide, silica). During the Asian dust period of March 15, 16, and 21 in 2010, Raman lidar measurements detected the presence of quartz, and successfully showed the vertical profile of the dust concentrations. The satellite observations such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) confirmed spatial distribution of Asian dust. This approach will be useful for characterizing the quartz dominated in the atmospheric aerosols and the investigations of mineral dust. It will be especially applicable for distinguishing the dust and non-dust aerosols in studies on the mixing state of Asian aerosols. Additionally, the presented method combined with satellite observations is enable qualitative and quantitative monitoring for Asian dust.

Aerosol Direct Radiative Forcing by Three Dimensional Observations from Passive- and Active- Satellite Sensors (수동형-능동형 위성센서 관측자료를 이용한 대기 에어러솔의 3차원 분포 및 복사강제 효과 산정)

  • Lee, Kwon-Ho
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.28 no.2
    • /
    • pp.159-171
    • /
    • 2012
  • Aerosol direct radiative forcing (ADRF) retrieval method was developed by combining data from passive and active satellite sensors. Aerosol optical thickness (AOT) retrieved form the Moderate Resolution Imaging Spectroradiometer (MODIS) as a passive visible sensor and aerosol vertical profile from to the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) as an active laser sensor were investigated an application possibility. Especially, space-born Light Detection and Ranging (Lidar) observation provides a specific knowledge of the optical properties of atmospheric aerosols with spatial, temporal, vertical, and spectral resolutions. On the basis of extensive radiative transfer modeling, it is demonstrated that the use of the aerosol vertical profiles is sensitive to the estimation of ADRF. Throughout the investigation of relationship between aerosol height and ADRF, mean change rates of ADRF per increasing of 1 km aerosol height are smaller at surface than top-of-atmosphere (TOA). As a case study, satellite data for the Asian dust day of March 31, 2007 were used to estimate ADRF. Resulting ADRF values were compared with those retrieved independently from MODIS only data. The absolute difference values are 1.27% at surface level and 4.73% at top of atmosphere (TOA).

A Study on the Algorithm for Estimating Rainfall According to the Rainfall Type Using Geostationary Meteorological Satellite Data (정지궤도 기상위성 자료를 활용한 강우유형별 강우량 추정연구)

  • Lee Eun-Joo;Suh Myoung-Seok
    • Proceedings of the KSRS Conference
    • /
    • 2006.03a
    • /
    • pp.117-120
    • /
    • 2006
  • Heavy rainfall events are occurred exceedingly various forms by a complex interaction between synoptic, dynamic and atmospheric stability. As the results, quantitative precipitation forecast is extraordinary difficult because it happens locally in a short time and has a strong spatial and temporal variations. GOES-9 imagery data provides continuous observations of the clouds in time and space at the right resolution. In this study, an power-law type algorithm(KAE: Korea auto estimator) for estimating rainfall based on the rainfall type was developed using geostationary meteorological satellite data. GOES-9 imagery and automatic weather station(AWS) measurements data were used for the classification of rainfall types and the development of estimation algorithm. Subjective and objective classification of rainfall types using GOES-9 imagery data and AWS measurements data showed that most of heavy rainfalls are occurred by the convective and mired type. Statistical analysis between AWS rainfall and GOES-IR data according to the rainfall types showed that estimation of rainfall amount using satellite data could be possible only for the convective and mixed type rainfall. The quality of KAE in estimating the rainfall amount and rainfall area is similar or slightly superior to the National Environmental Satellite Data and Information Service's auto-estimator(NESDIS AE), especially for the multi cell convective and mixed type heavy rainfalls. Also the high estimated level is denoted on the mature stage as well as decaying stages of rainfall system.

  • PDF