Browse > Article
http://dx.doi.org/10.5572/KOSAE.2012.28.2.159

Aerosol Direct Radiative Forcing by Three Dimensional Observations from Passive- and Active- Satellite Sensors  

Lee, Kwon-Ho (Department of Satellite Geoinformatic Engineering, Kyungil University)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.28, no.2, 2012 , pp. 159-171 More about this Journal
Abstract
Aerosol direct radiative forcing (ADRF) retrieval method was developed by combining data from passive and active satellite sensors. Aerosol optical thickness (AOT) retrieved form the Moderate Resolution Imaging Spectroradiometer (MODIS) as a passive visible sensor and aerosol vertical profile from to the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) as an active laser sensor were investigated an application possibility. Especially, space-born Light Detection and Ranging (Lidar) observation provides a specific knowledge of the optical properties of atmospheric aerosols with spatial, temporal, vertical, and spectral resolutions. On the basis of extensive radiative transfer modeling, it is demonstrated that the use of the aerosol vertical profiles is sensitive to the estimation of ADRF. Throughout the investigation of relationship between aerosol height and ADRF, mean change rates of ADRF per increasing of 1 km aerosol height are smaller at surface than top-of-atmosphere (TOA). As a case study, satellite data for the Asian dust day of March 31, 2007 were used to estimate ADRF. Resulting ADRF values were compared with those retrieved independently from MODIS only data. The absolute difference values are 1.27% at surface level and 4.73% at top of atmosphere (TOA).
Keywords
Satellite; Lidar; Aerosol; Radiative forcing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Li, Z., K.-H. Lee, Y. Wang, J. Xin, and W.-M. Hao (2010) First observation-based estimates of cloud-free aerosol radiative forcing across China, J. Geophys. Res., 115, D00K18, doi:10.1029/2009JD013306.   DOI
2 Liao, H. and J.H. Seinfeild (1998), Radiative forcing by mineral dust aerosols: Sensitivity to key variables, J. Geophys. Res., 103(D24), 31637-31645.   DOI
3 Meloni, D., A.D. Sarra, T.D. Iotio, and G. Fiocco (2005) Influence of the vertical profile of Saharan dust on the visible direct radiative forcing, J. Quant. Spectrosc. Radiat. T., 93, 497-413.
4 Noh, Y.M., K.H. Lee, and H. Lee (2011) A retrieval of vertically- resolved Asian dust concentration from quartz channel measurements of Raman lidar, Korean J. of Atmos. Environ., 27(3), 326-336. (in Korean with English abstract)   DOI   ScienceOn
5 Remer, L.A., Y.J. Kaufman, D. Tanré, S. Mattoo, D.A. Chu, J.V. Martins, R.-R. Li, C. Ichoku, R.C. Levy, R.G. Kleidman, T.F. Eck, E. Vermote, and B.N. Holben (2005) The MODIS aerosol algorithm, products and validation, J. Atmos. Sci., 62, 947-973.   DOI   ScienceOn
6 Ricchiazzi, P., S. Yang, C. Gautier, and D. Sowle (1998) SBDART: A research and teaching tool for plane parallel radiative transfer in the Earth's atmosphere, Bull. Am. Meteorol. Soc., 79, 2101-2114, doi:10.1175/1520-0477.   DOI
7 Twomey, S. (1977) The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34, 1149-1152.   DOI
8 Wendisch, M., D. Müller, I. Mattis, and A. Ansmann (2006) Potential of lidar backscatter data to estimate solar aerosol radiative forcing, Appl. Opt., 45, 770-783.   DOI
9 Winker, D.M., W.H. Hunt, and M.J. McGill (2007) Initial performance assessment of CALIOP, Geophys. Res. Lett., 34, L19803, doi:10.1029/2007GL030135.   DOI   ScienceOn
10 Zhang, J.L. and S.A. Christopher (2003) Longwave radiative forcing of Saharan dust aerosols estimated from MODIS, MISR, CERES observations on Terra, Geophys. Res. Lett., 30, doi:10.1029/2003GL018479.
11 Kim, S.-W., S. Berthier, J.-C. Raut, P. Chazette, F. Dulac, and S.-C. Yoon (2008) Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea, Atmos. Chem. Phys., 8, 3705-3720, doi:10.5194/acp-8-3705-2008.   DOI
12 Lee, B.-I., S.-C. Yoon, and Y. Kim (2008) Analysis of vertical profiles and optical characteristics of the Asian dust using ground-based measurements, Atmosphere, 18 (4), 287-297. (in Korean with English abstract)
13 Lee, K.H. and Y.J. Kim (2010) Satellite remote sensing of Asian aerosols: a case study of clean, polluted and dust storm days, Atmos. Meas. Tech., 3, 1771-1784, doi:10.5194/amt-3-1771-2010.   DOI
14 Lee, K.H., Z. Li, Y.J. Kim, and A. Kokhanovsky (2009) Aerosol monitoring from satellite observations: a history of three decades, Atmospheric and Biological Environmental Monitoring, Y.J. Kim, U. Platt, M.B. Gu, H. Iwahashi (Eds.), Springer, doi:10.1007/978-1-4020-9674-7_2, 13-38.
15 Lee, K.H., D.H. Lee, and Y.J. Kim (2006) MODIS application of MODIS satellite observation data for air quality forecast, Korean J. of Atmos. Environ., 22(6), 851-862. (in Korean with English abstract)
16 Lee, K.H., J.E. Kim, Y.J. Kim, and J. Kim (2004) Impact of the smoke aerosol plume from Russian forest fires on the atmospheric environment over Korea during May 2003, Korean J. of Atmos. Environ., 20(5), 603-613. (in Korean with English abstract)
17 Lee, K.H., Z. Li, M.S. Wong, J. Xin, Y. Wang, and F. Zhao (2007) Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements, J. of Geophys. Res., 112, D22S15, doi:10.1029/2007JD009077.
18 Levy, R.C., L.A. Remer, S. Mattoo, E.F. Vermote, and Y.J. Kaufman (2007) Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance, J. Geophys. Res., 112, D13211, doi:10.1029/2006JD007811.   DOI
19 Albrecht, B.A. (1989) Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227-1230.   DOI   ScienceOn
20 Ackerman, A.S., O.B. Toon, D.E. Stevens, A.J. Heymsfield, V. Ramanathan, and E.J. Welton (2000) Reduction of tropical cloudiness by soot, Science, 288, 1042- 1047.   DOI   ScienceOn
21 Bush, B.C. and F.P.J. Valero (2003) Surface aerosol radiative forcing at Gosan during the ACE Asia campaign, J. Geophys. Res., 108(D23), 8660, doi:10.1029/2002JD003233.   DOI
22 Carlson, T.N. and S.G. Benjamin (1980) Radiative heating rates for Saharan dust, J. Atmos. Sci., 37, 193-213.   DOI
23 Claquin, T., M. Schulz, Y.J. Balkanski, and O. Boucher (1998) Uncertainties in assessing radiative forcing by mineral dust, Tellus B, 50, 491-505.   DOI   ScienceOn
24 Gong, W., Z. Zhu, P. Li, Q. Qin, Z. Hao, M. Liu, and Y. Ma (2006) Mobile aerosol Lidar for earth observation atmospheric correction, 2006 IEEE International Sensing Symposium Geoscience and Remote, 1126-1129, doi:10.1109/IGARSS.2006.291.
25 Haywood, J.M. and V. Ramaswamy (1998) Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols, J. Geophys. Res., 103, 6043-6058.   DOI