• Title/Summary/Keyword: sparsity

Search Result 328, Processing Time 0.019 seconds

Time delay estimation between two receivers using weighted dictionary method for active sonar (능동소나를 위한 가중 딕션너리를 사용한 두 수신기 간 신호 지연 추정 방법)

  • Lim, Jun-Seok;Kim, Seongil
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.5
    • /
    • pp.460-465
    • /
    • 2021
  • In active sonar, time delay estimation is used to find the distance between the target and the sonar. Among the time delay estimation methods for active sonar, estimation in the frequency domain is widely used. When estimating in the frequency domain, the time delay can be thought of as a frequency estimator, so it can be used relatively easily. However, this method is prone to rapid increase in error due to noise. In this paper, we propose a new method which applies weighted dictionary and sparsity in order to reduce this error increase and we extend it to two receivers to propose an algorithm for estimating the time delay between two receivers. And the case of applying the proposed method and the case of not applying the proposed method including the conventional frequency domain algorithm and Generalized Cross Correlation-Phase transform (GCC-PHAT) in a white noise environment were compared with one another. And we show that the newly proposed method has a performance gain of about 15 dB to about 60 dB compared to other algorithms.

A personalized exercise recommendation system using dimension reduction algorithms

  • Lee, Ha-Young;Jeong, Ok-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.6
    • /
    • pp.19-28
    • /
    • 2021
  • Nowadays, interest in health care is increasing due to Coronavirus (COVID-19), and a lot of people are doing home training as there are more difficulties in using fitness centers and public facilities that are used together. In this paper, we propose a personalized exercise recommendation algorithm using personalized propensity information to provide more accurate and meaningful exercise recommendation to home training users. Thus, we classify the data according to the criteria for obesity with a k-nearest neighbor algorithm using personal information that can represent individuals, such as eating habits information and physical conditions. Furthermore, we differentiate the exercise dataset by the level of exercise activities. Based on the neighborhood information of each dataset, we provide personalized exercise recommendations to users through a dimensionality reduction algorithm (SVD) among model-based collaborative filtering methods. Therefore, we can solve the problem of data sparsity and scalability of memory-based collaborative filtering recommendation techniques and we verify the accuracy and performance of the proposed algorithms.

Issues and Challenges in the Extraction and Mapping of Linked Open Data Resources with Recommender Systems Datasets

  • Nawi, Rosmamalmi Mat;Noah, Shahrul Azman Mohd;Zakaria, Lailatul Qadri
    • Journal of Information Science Theory and Practice
    • /
    • v.9 no.2
    • /
    • pp.66-82
    • /
    • 2021
  • Recommender Systems have gained immense popularity due to their capability of dealing with a massive amount of information in various domains. They are considered information filtering systems that make predictions or recommendations to users based on their interests and preferences. The more recent technology, Linked Open Data (LOD), has been introduced, and a vast amount of Resource Description Framework data have been published in freely accessible datasets. These datasets are connected to form the so-called LOD cloud. The need for semantic data representation has been identified as one of the next challenges in Recommender Systems. In a LOD-enabled recommendation framework where domain awareness plays a key role, the semantic information provided in the LOD can be exploited. However, dealing with a big chunk of the data from the LOD cloud and its integration with any domain datasets remains a challenge due to various issues, such as resource constraints and broken links. This paper presents the challenges of interconnecting and extracting the DBpedia data with the MovieLens 1 Million dataset. This study demonstrates how LOD can be a vital yet rich source of content knowledge that helps recommender systems address the issues of data sparsity and insufficient content analysis. Based on the challenges, we proposed a few alternatives and solutions to some of the challenges.

Adaptive Hyperspectral Image Classification Method Based on Spectral Scale Optimization

  • Zhou, Bing;Bingxuan, Li;He, Xuan;Liu, Hexiong
    • Current Optics and Photonics
    • /
    • v.5 no.3
    • /
    • pp.270-277
    • /
    • 2021
  • The adaptive sparse representation (ASR) can effectively combine the structure information of a sample dictionary and the sparsity of coding coefficients. This algorithm can effectively consider the correlation between training samples and convert between sparse representation-based classifier (SRC) and collaborative representation classification (CRC) under different training samples. Unlike SRC and CRC which use fixed norm constraints, ASR can adaptively adjust the constraints based on the correlation between different training samples, seeking a balance between l1 and l2 norm, greatly strengthening the robustness and adaptability of the classification algorithm. The correlation coefficients (CC) can better identify the pixels with strong correlation. Therefore, this article proposes a hyperspectral image classification method called correlation coefficients and adaptive sparse representation (CCASR), based on ASR and CC. This method is divided into three steps. In the first step, we determine the pixel to be measured and calculate the CC value between the pixel to be tested and various training samples. Then we represent the pixel using ASR and calculate the reconstruction error corresponding to each category. Finally, the target pixels are classified according to the reconstruction error and the CC value. In this article, a new hyperspectral image classification method is proposed by fusing CC and ASR. The method in this paper is verified through two sets of experimental data. In the hyperspectral image (Indian Pines), the overall accuracy of CCASR has reached 0.9596. In the hyperspectral images taken by HIS-300, the classification results show that the classification accuracy of the proposed method achieves 0.9354, which is better than other commonly used methods.

Preconditioned Jacobian-free Newton-Krylov fully implicit high order WENO schemes and flux limiter methods for two-phase flow models

  • Zhou, Xiafeng;Zhong, Changming;Li, Zhongchun;Li, Fu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.49-60
    • /
    • 2022
  • Motivated by the high-resolution properties of high-order Weighted Essentially Non-Oscillatory (WENO) and flux limiter (FL) for steep-gradient problems and the robust convergence of Jacobian-free Newton-Krylov (JFNK) methods for nonlinear systems, the preconditioned JFNK fully implicit high-order WENO and FL schemes are proposed to solve the transient two-phase two-fluid models. Specially, the second-order fully-implicit BDF2 is used for the temporal operator and then the third-order WENO schemes and various flux limiters can be adopted to discrete the spatial operator. For the sake of the generalization of the finite-difference-based preconditioning acceleration methods and the excellent convergence to solve the complicated and various operational conditions, the random vector instead of the initial condition is skillfully chosen as the solving variables to obtain better sparsity pattern or more positions of non-zero elements in this paper. Finally, the WENO_JFNK and FL_JFNK codes are developed and then the two-phase steep-gradient problem, phase appearance/disappearance problem, U-tube problem and linear advection problem are tested to analyze the convergence, computational cost and efficiency in detailed. Numerical results show that WENO_JFNK and FL_JFNK can significantly reduce numerical diffusion and obtain better solutions than traditional methods. WENO_JFNK gives more stable and accurate solutions than FL_JFNK for the test problems and the proposed finite-difference-based preconditioning acceleration methods based on the random vector can significantly improve the convergence speed and efficiency.

A Study on Evaluation Methods for Interpreting AI Results in Malware Analysis (악성코드 분석에서의 AI 결과해석에 대한 평가방안 연구)

  • Kim, Jin-gang;Hwang, Chan-woong;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1193-1204
    • /
    • 2021
  • In information security, AI technology is used to detect unknown malware. Although AI technology guarantees high accuracy, it inevitably entails false positives, so we are considering introducing XAI to interpret the results predicted by AI. However, XAI evaluation studies that evaluate or verify the interpretation only provide simple interpretation results are lacking. XAI evaluation is essential to ensure safety which technique is more accurate. In this paper, we interpret AI results as features that have significantly contributed to AI prediction in the field of malware, and present an evaluation method for the interpretation of AI results. Interpretation of results is performed using two XAI techniques on a tree-based AI model with an accuracy of about 94%, and interpretation of AI results is evaluated by analyzing descriptive accuracy and sparsity. As a result of the experiment, it was confirmed that the AI result interpretation was properly calculated. In the future, it is expected that the adoption and utilization of XAI will gradually increase due to XAI evaluation, and the reliability and transparency of AI will be greatly improved.

User Bias Drift Social Recommendation Algorithm based on Metric Learning

  • Zhao, Jianli;Li, Tingting;Yang, Shangcheng;Li, Hao;Chai, Baobao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.12
    • /
    • pp.3798-3814
    • /
    • 2022
  • Social recommendation algorithm can alleviate data sparsity and cold start problems in recommendation system by integrated social information. Among them, matrix-based decomposition algorithms are the most widely used and studied. Such algorithms use dot product operations to calculate the similarity between users and items, which ignores user's potential preferences, reduces algorithms' recommendation accuracy. This deficiency can be avoided by a metric learning-based social recommendation algorithm, which learns the distance between user embedding vectors and item embedding vectors instead of vector dot-product operations. However, previous works provide no theoretical explanation for its plausibility. Moreover, most works focus on the indirect impact of social friends on user's preferences, ignoring the direct impact on user's rating preferences, which is the influence of user rating preferences. To solve these problems, this study proposes a user bias drift social recommendation algorithm based on metric learning (BDML). The main work of this paper is as follows: (1) the process of introducing metric learning in the social recommendation scenario is introduced in the form of equations, and explained the reason why metric learning can replace the click operation; (2) a new user bias is constructed to simultaneously model the impact of social relationships on user's ratings preferences and user's preferences; Experimental results on two datasets show that the BDML algorithm proposed in this study has better recommendation accuracy compared with other comparison algorithms, and will be able to guarantee the recommendation effect in a more sparse dataset.

Study on Neuron Activities for Adversarial Examples in Convolutional Neural Network Model by Population Sparseness Index (개체군 희소성 인덱스에 의한 컨벌루션 신경망 모델의 적대적 예제에 대한 뉴런 활동에 관한 연구)

  • Youngseok Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Convolutional neural networks have already been applied to various fields beyond human visual processing capabilities in the image processing area. However, they are exposed to a severe risk of deteriorating model performance due to the appearance of adversarial attacks. In addition, defense technology to respond to adversarial attacks is effective against the attack but is vulnerable to other types of attacks. Therefore, to respond to an adversarial attack, it is necessary to analyze how the performance of the adversarial attack deteriorates through the process inside the convolutional neural network. In this study, the adversarial attack of the Alexnet and VGG11 models was analyzed using the population sparseness index, a measure of neuronal activity in neurophysiology. Through the research, it was observed in each layer that the population sparsity index for adversarial examples showed differences from that of benign examples.

Extended Knowledge Graph using Relation Modeling between Heterogeneous Data for Personalized Recommender Systems (이종 데이터 간 관계 모델링을 통한 개인화 추천 시스템의 지식 그래프 확장 기법)

  • SeungJoo Lee;Seokho Ahn;Euijong Lee;Young-Duk Seo
    • Smart Media Journal
    • /
    • v.12 no.4
    • /
    • pp.27-40
    • /
    • 2023
  • Many researchers have investigated ways to enhance recommender systems by integrating heterogeneous data to address the data sparsity problem. However, only a few studies have successfully integrated heterogeneous data using knowledge graph. Additionally, most of the knowledge graphs built in these studies only incorporate explicit relationships between entities and lack additional information. Therefore, we propose a method for expanding knowledge graphs by using deep learning to model latent relationships between heterogeneous data from multiple knowledge bases. Our extended knowledge graph enhances the quality of entity features and ultimately increases the accuracy of predicted user preferences. Experiments using real music data demonstrate that the expanded knowledge graph leads to an increase in recommendation accuracy when compared to the original knowledge graph.

A Study of Pattern Defect Data Augmentation with Image Generation Model (이미지 생성 모델을 이용한 패턴 결함 데이터 증강에 대한 연구)

  • Byungjoon Kim;Yongduek Seo
    • Journal of the Korea Computer Graphics Society
    • /
    • v.29 no.3
    • /
    • pp.79-84
    • /
    • 2023
  • Image generation models have been applied in various fields to overcome data sparsity, time and cost issues. However, it has limitations in generating images from regular pattern images and detecting defects in such data. In this paper, we verified the feasibility of the image generation model to generate pattern images and applied it to data augmentation for defect detection of OLED panels. The data required to train an OLED defect detection model is difficult to obtain due to the high cost of OLED panels. Therefore, even if the data set is obtained, it is necessary to define and classify various defect types. This paper introduces an OLED panel defect data acquisition system that acquires a hypothetical data set and augments the data with an image generation model. In addition, the difficulty of generating pattern images in the diffusion model is identified and a possibility is proposed, and the limitations of data augmentation and defect detection data augmentation using the image generation model are improved.