Browse > Article

Issues and Challenges in the Extraction and Mapping of Linked Open Data Resources with Recommender Systems Datasets  

Nawi, Rosmamalmi Mat (Centre for Artificial Intelligence Technology, Faculty of Information Science and Technology, The National University of Malaysia)
Noah, Shahrul Azman Mohd (Centre for Artificial Intelligence Technology, Faculty of Information Science and Technology, The National University of Malaysia)
Zakaria, Lailatul Qadri (Centre for Artificial Intelligence Technology, Faculty of Information Science and Technology, The National University of Malaysia)
Publication Information
Journal of Information Science Theory and Practice / v.9, no.2, 2021 , pp. 66-82 More about this Journal
Recommender Systems have gained immense popularity due to their capability of dealing with a massive amount of information in various domains. They are considered information filtering systems that make predictions or recommendations to users based on their interests and preferences. The more recent technology, Linked Open Data (LOD), has been introduced, and a vast amount of Resource Description Framework data have been published in freely accessible datasets. These datasets are connected to form the so-called LOD cloud. The need for semantic data representation has been identified as one of the next challenges in Recommender Systems. In a LOD-enabled recommendation framework where domain awareness plays a key role, the semantic information provided in the LOD can be exploited. However, dealing with a big chunk of the data from the LOD cloud and its integration with any domain datasets remains a challenge due to various issues, such as resource constraints and broken links. This paper presents the challenges of interconnecting and extracting the DBpedia data with the MovieLens 1 Million dataset. This study demonstrates how LOD can be a vital yet rich source of content knowledge that helps recommender systems address the issues of data sparsity and insufficient content analysis. Based on the challenges, we proposed a few alternatives and solutions to some of the challenges.
recommender system; linked open data; DBpedia;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cappiello, C., Di Noia, T., Marcu, B. A., & Matera, M. (2016, June 6-9). A quality model for linked data exploration. In A. Bozzon, P. Cudre-Maroux, & C. Pautasso (Eds.), Proceedings of the 16th International Conference on Web Engineering, ICWE 2016 (vol. 9671, pp. 397-404). Springer.
2 Hammou, B. A., Lahcen, A. A., & Mouline, S. (2019). A distributed group recommendation system based on extreme gradient boosting and big data technologies. Applied Intelligence, 49(12), 4128-4149.   DOI
3 Franz, T., Koch, J., Dividino, R., & Staab, S. (2010, March 22-24). LENA-TR: Browsing linked open data across knowledge-aspects. In D. Brickley, V. K. Chaudhri, H. Halpin, & D. McGuinness (Eds.), Proceedings of the AAAI 2010 Spring symposium (Technical Report SS-10-07, pp. 46-51). AAAI Press.
4 Gmerek, N. (2015). The determinants of Polish movies' box office performance in Poland. Journal of Marketing and Consumer Behaviour in Emerging Markets, 1(1), 15-35.   DOI
5 Anelli, V. W., Deldjoo, Y., Di Noia, T., Di Sciascio, E., & Merra, F. A. (2020, May 31-June 4). SAShA: Semantic-aware shilling attacks on recommender systems exploiting knowledge graphs. In A. Harth, S. Kirrane, A.-C. N. Ngomo, H. Paulheim, A. Rula, A. L. Gentile, P. Haase, & M. Cochez (Eds.), Proceedings of the 17th International Conference, ESWC 2020 (vol. 12123, pp. 307-323). Springer.   DOI
6 Barros, M., Moitinho, A., & Couto, F. M. (2020, April 14-17). Hybrid semantic recommender system for chemical compounds. In J. M. Jose, E. Yilmaz, J. Magalhaes, P. Castells, N. Ferro, M. J. Silva, & F. Martins (Eds.), Proceedings of the 42nd European Conference on IR Research, ECIR 2020 (vol. 12036, pp. 94-101). Springer.
7 Beel, J., Gipp, B., Langer, S., & Breitinger, C. (2016). Research-paper recommender systems: A literature survey. International Journal on Digital Libraries, 17(4), 305-338.   DOI
8 Bostandjiev, S., O'Donovan, J., & Hollerer, T. (2012, September 9-13). TasteWeights: A visual interactive hybrid recommender system. In P. Cunningham, N. Hurley, I. Guy, & S. S. Anand (Eds.), Proceedings of the RecSys '12: 6th ACM Conference on Recommender Systems (pp. 35-42). Association for Computing Machinery.
9 Cao, D., He, X., Miao, L., Xiao, G., Chen, H., & Xu, J. (2019). Social-enhanced attentive group recommendation. IEEE Transactions on Knowledge and Data Engineering, 33(3), 1195-1209.   DOI
10 Jamil, N., Mohd Noah, S. A., & Mohd, M. (2020). Collaborative item recommendations based on friendship strength in social network. International Journal of Machine Learning and Computing, 10(3), 437-443.   DOI
11 Hidayat, R., Yahya, Y., Mohd Noah, S. A., Ahmad, M. Z., & Hamdan, A. R. (2012). Semantic web portal in university research community framework. International Journal on Advanced Science, Engineering and Information Technology, 2(6), 449-453.   DOI
12 Al-Barznji, K., & Atanassov, A. (2017, October 4-6). Collaborative filtering techniques for generating recommendations on big data. In V. Sgurev, K. Boyanov, M. Hadjiski, K. Stoilova, K. Boshnakov, E. Nikolov, & V. Andreev (Eds.), Proceedings of the International Conference Automatics and Informatics' 2017 (pp. 225-228). John Atanasoff Society of Automatics and Informatics.
13 Jannach, D., Zanker, M., Felfernig, A., & Friedrich, G. (2010). Recommender systems: An introduction. Cambridge University Press.
14 Ko, H., Kim, E., Ko, I.-Y. & Chang, D. (2014, January 15-17). Semantically-based recommendation by using semantic clusters of users' viewing history. In S.-M. Choi, & J.-C. Chen (Eds.), Proceedings of the 2014 International Conference on Big Data and Smart Computing (BIGCOMP) (pp. 83-87). IEEE.
15 Kuchar, J. (2015, August 2-5). Augmenting a feature set of movies using linked open data. In N. Bassiliades, P. Fodor, A. Giurca, G. Gottlob, T. Kliegr, G. J. Nalepa, M. Palmirani, A. Paschke, M. Proctor, D. Roman, F. Sadri, & N. Stojanovic (Eds.), Proceedings of the RuleML 2015 Challenge, the Special Track on Rule-based Recommender Systems for the Web of Data (vol. 1417, pp. 1-9). CEUR Workshop Proceedings.
16 Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P. N., Hellmann, S., Morsey, M., van Kleef, P., Auer, S., & Bizer, C. (2015). DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semantic Web, 6(2), 167-195.   DOI
17 Hong, M., Jung, J. J., & Lee, M. (2015, November 26-27). Social affinity-based group recommender system. In P. C. Vinh, & V. Alagar (Eds.), Proceedings of the 4th International Conference, ICCASA 2015 (vol. 165, pp. 111-121). Springer.
18 Yochum, P., Chang, L., Gu, T., & Zhu, M. (2020). Linked open data in location-based recommendation system on tourism domain: A survey. IEEE Access, 8, 16409-16439.   DOI
19 Peralta, V. (2007). Extraction and integration of MovieLens and IMDb data, Technical Report. Acces Personnalise a des Masses de Donnees.
20 Osman, N. A., Noah, S. A. M., & Darwich, M. (2020). Contextual sentiment based recommender system to provide recommendation in the electronic products domain. International Journal of Machine Learning and Computing, 9(4), 425-431.   DOI
21 Rawal, M., & Saavedra, J. L. (2017). Mediating effect of word-of-mouth in movie theatre industry. Journal of Media and Communication Studies, 9(3), 17-23.   DOI
22 Vilakone, P., Park, D.-S., Xinchang, K., & Hao, F. (2018). An efficient movie recommendation algorithm based on improved k-clique. Human-centric Computing and Information Sciences, 8(1), 38.   DOI
23 Saat, N. I. Y., Noah, S. A. M., & Mohd, M. (2018). Towards serendipity for content-based recommender systems. International Journal on Advanced Science, Engineering and Information Technology, 8(4-2), 1762-1769.   DOI
24 Yadav, U., Duhan, N., & Bhatia, K. K. (2020). Dealing with pure new user cold-start problem in recommendation system based on linked open data and social network features. Mobile Information Systems, 2020, 8912065.   DOI
25 Yang, R., Hu, W., & Qu, Y. (2013). Using semantic technology to improve recommender systems based on slope one. In J. Li, G. Qi, D. Zhao, W. Nejdl, & H.-T. Zheng (Eds.), Semantic web and web science (pp. 11-23). Springer.
26 Albatayneh, N. A., Ghauth, K. I., & Chua, F.-F. (2018). Utilizing learners' negative ratings in semantic content-based recommender system for e-learning forum. Journal of Educational Technology & Society, 21(1), 112-125.
27 Ameen, A. (2019). Knowledge based recommendation system in semantic web - a survey. International Journal of Computer Applications, 182(43), 20-25.   DOI
28 Sankar, A., Zhang, X., Krishnan, A., & Han, J. (2020, February 3-7). Inf-VAE: A variational autoencoder framework to integrate homophily and influence in diffusion prediction. In J. Caverlee, X. B. Hu, M. Lalmas, & W. Wang (Eds.), Proceedings of the WSDM '20: 13th International Conference on Web Search and Data Mining (pp. 510-518). Association for Computing Machinery.
29 Dara, S., Chowdary, C. R., & Kumar, C. (2020). A survey on group recommender systems. Journal of Intelligent Information Systems, 54(2), 271-295.   DOI
30 Delic, A., Neidhardt, J., Nguyen, T. N., & Ricci, F. (2018). An observational user study for group recommender systems in the tourism domain. Information Technology & Tourism, 19(1-4), 87-116.   DOI
31 Maillo, J., Ramirez, S., Triguero, I., & Herrera, F. (2017). kNN-IS: An iterative spark-based design of the k-nearest neighbors classifier for big data. Knowledge-Based Systems, 117, 3-15.   DOI
32 Stratigi, M., Kondylakis, H., & Stefanidis, K. (2020). Multidimensional group recommendations in the health domain. Algorithms, 13(3), 54.   DOI
33 Chu, P.-M., Mao, Y.-S., Lee, S.-J., & Hou, C.-L. (2020). Leveraging user comments for recommendation in e-commerce. Applied Sciences, 10(7), 2540.   DOI
34 Erion, C., & Maurizio, M. (2017). Hybrid recommender systems: A systematic literature review. Intelligent Data Analysis, 21(6), 1487-1524.   DOI
35 Ferre, S. (2017). SPARKLIS: An expressive query builder for SPARQL endpoints with guidance in natural language. Semantic Web, 8(3), 405-418.   DOI
36 Nawi, R. M., Mohd Noah, S. A., & Zakaria, L. Q. (2020). Evaluation of group modelling strategy in model-based collaborative filtering recommendation. International Journal of Machine Learning and Computing, 10(2), 330-338.   DOI
37 Nguyen, P. T., Tomeo, P., Di Noia, T., & Di Sciascio, E. (2015, October 11-15). Content-based recommendations via DB-pedia and freebase: A case study in the music domain. In M. Arenas, O. Corcho, E. Simperl, M. Strohmaier, M. d'Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan, K. Thirunarayan, & S. Staab (Eds.), Proceedings of the 14th International Semantic Web Conference (vol. 9366, pp. 605-621). Springer.
38 Lops, P., Jannach, D., Musto, C., Bogers, T., & Koolen, M. (2019). Trends in content-based recommendation. User Modeling and User-Adapted Interaction, 29(2), 239-249.   DOI
39 Mirizzi, R., Di Noia, T., Ragone, A., Ostuni, V. C., & Di Sciascio, E. (2012). Movie recommendation with DBpedia. IIR, 101-112.
40 Musto, C., Basile, P., Lops, P., de Gemmis, M., & Semeraro, G. (2014, October 6). Linked open data-enabled strategies for top-N recommendations. In T. Bogers, M. Koolen, & I. Cantador (Eds.), Proceedings of the 1st Workshop on New Trends in Content-based Recommender Systems colocated with the 8th ACM Conference on Recommender Systems, CBRecSys@RecSys 2014 (vol. 1245, pp. 49-55). CEUR Workshop Proceedings.
41 Nilashi, M., Ibrahim, O., & Bagherifard, K. (2018). A recommender system based on collaborative filtering using ontology and dimensionality reduction techniques. Expert Systems with Applications, 92, 507-520.   DOI
42 Nozari, R. B., & Koohi, H. (2020). A novel group recommender system based on members' influence and leader impact. Knowledge-Based Systems, 205, 106296.   DOI
43 Ortega, F., Hernando, A., Bobadilla, J., & Kang, J. H. (2016). Recommending items to group of users using matrix factorization based collaborative filtering. Information Sciences, 345, 313-324.   DOI
44 Ostuni, V. C., Di Noia, T., Di Sciascio, E., & Mirizzi, R. (2013, October 12-16). Top-N recommendations from implicit feedback leveraging linked open data. In Q. Yang, I. King, Q. Li, & P. Pu (Eds.), Proceedings of the RecSys '13: 7th ACM conference on Recommender systems (pp. 85-92). Association for Computing Machinery.
45 Zhao, W. X., He, G., Yang, K., Dou, H., Huang, J., Ouyang, S., & Wen, J.-R. (2019). KB4Rec: A data set for linking knowledge bases with recommender systems. Data Intelligence, 1(2), 121-136.   DOI
46 Dell'Aglio, D., Celino, I., & Cerizza, D. (2010, November 8). Anatomy of a semantic web-enabled knowledge-based recommender system. In A. Bernstein, P. Grace, M. Klusch, & M. Paolucci (Eds.), Proceedings of the 4th International Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web (SMR2 2010) (vol. 667, pp. 115-130). CEUR Workshop Proceedings.
47 Carrillat, F. A., Legoux, R., & Hadida, A. L. (2018). Debates and assumptions about motion picture performance: A meta-analysis. Journal of the Academy of Marketing Science, 46(2), 273-299.   DOI
48 Zarzour, H., Maazouzi, F., Soltani, M., & Chemam, C. (2018, May 8-10). An improved collaborative filtering recommendation algorithm for big data. In A. Amine, M. Mouhoub, O. A. Mohamed, & B. Djebbar (Eds.), Proceedings of the 6th IFIP TC 5 International Conference, CIIA 2018 (vol. 522, pp. 660-668). Springer.
49 Zaveri, A., Maurino, A., & Equille, L.-B. (2014). Web data quality: Current state and new challenges. International Journal on Semantic Web and Information Systems, 10(2), 1-6.   DOI
50 Zhang, S., Yao, L., Sun, A., & Tay, Y. (2019). Deep learning based recommender system: A survey and new perspectives. ACM Computing Surveys, 52(1), 1-38.   DOI
51 Figueroa, C., Vagliano, I., Rocha, O. R., Torchiano, M., Zucker, C. F., Corrales, J. C., & Morisio, M. (2019). Executing, comparing, and reusing linked-data-based recommendation algorithms with the allied framework. In M. Lytras, N. Aljohani, E. Damiani, & K. Chui (Eds.), Semantic Web science and real-world applications (pp. 18-47). IGI Global.
52 Iana, A., Jung, S., Naeser, P., Birukou, A., Hertling, S., & Paulheim, H. (2019, September 9-12). Building a conference recommender system based on SciGraph and WikiCFP. In M. Acosta, P. Cudre-Mauroux, M. Maleshkova, T. Pellegrini, H. Sack, & Y. Sure-Vetter (Eds.), Proceedings of the 15th International Conference on Semantic Systems, SEMANTiCS 2019 (vol. 11702, pp. 117-123). Springer.
53 Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2007). DBpedia: A nucleus for a web of open data. In K. Aberer, K.-S. Choi, N. Noy, D. Allemang, K.-I. Lee, L. Nixon, J. Golbeck, P. Mika, D. Maynard, R. Mizoguchi, G. Schreiber, & P. Cudre-Mauroux (Eds.), Proceedings of the 6th International Semantic Web Conference, 2nd Asian Semantic Web Conference, ISWC 2007 + ASWC 2007 (vol 4825, pp. 722-735). Springer.
54 Di Noia, T., Ostuni, V. C., Tomeo, P., & Di Sciascio, E. (2016). SPrank: Semantic path-based ranking for top-N recommendations using linked open data. ACM Transactions on Intelligent Systems and Technology, 8(1), 9.   DOI
55 Feng, X., Zhang, H., Ren, Y., Shang, P., Zhu, Y., Liang, Y., Guan, R., & Xu, D. (2019). The deep learning-based recommender system "Pubmender" for choosing a biomedical publication venue: Development and validation study. Journal of Medical Internet Research, 21(5), e12957.   DOI
56 Musto, C., Basile, P., Lops, P., de Gemmis, M., & Semeraro, G. (2017). Introducing linked open data in graph-based recommender systems. Information Processing & Management, 53(2), 405-435.   DOI
57 Deshmukh, A. A., Nair, P., & Rao, S. (2018, November 17-20). A scalable clustering algorithm for serendipity in recommender systems. In H. Tong, Z. Li, F. Zhu, & J. Yu (Eds.), Proceedings of the 2018 IEEE International Conference on Data Mining Workshops (ICDMW) (pp. 1279-1288). IEEE.
58 Di Noia, T., Mirizzi, R., Ostuni, V. C., Romito, D., & Zanker, M. (2012, September 5-7). Linked open data to support content-based recommender systems. In H. Sack, & L. T. Pellegrini (Eds.), Proceedings of the I-SEMANTICS 2012: 8th International Conference on on Semantic Systems (pp. 1-8). Association for Computing Machinery.
59 Kim, M. H. (2013). Determinants of revenues in the motion picture industry. Applied Economics Letters, 20(11), 1071-1075.   DOI
60 Kushwaha, N., & Vyas, O. P. (2014, October 9-11). SemMovieRec: Extraction of semantic features of DBpedia for recommender system. In P. Bhattacharya, P. J. Narayanan, & S. Padmanabhuni (Eds.), Proceedings of the COMPUTE '14: 7th ACM India Computing Conference (pp. 1-9). Association for Computing Machinery.
61 Petrova, E., Pauwels, P., Svidt, K., & Jensen, R. L. (2019, July 10-12). Semantic data mining and linked data for a recommender system in the AEC industry. In J. O'Donnell, A. Chassiakos, D. Rovas, & D. Hall (Eds.), Proceedings of the 2019 European Conference on Computing in Construction (pp. 172-181). European Council on Computing in Construction.
62 Piao, G., & Breslin, J. G. (2018, June 3-7). Transfer learning for item recommendations and knowledge graph completion in item related domains via a co-factorization model. In A. Gangemi, R. Navigli, M.-E. Vidal, P. Hitzler, R. Troncy, L. Hollink, A. Tordai, & M. Alam (Eds.), Proceedings of the 15th International Conference, ESWC 2018 (vol. 10843, pp. 496-511). Springer.
63 Roy, A., Banerjee, S., Bhatt, C., Badr, Y., & Mallik, S. (2018). Hybrid group recommendation using modified termite colony algorithm: A context towards big data. Journal of Information & Knowledge Management, 17(2), 1850019.   DOI
64 Sansonetti, G., Gasparetti, F., Micarelli, A., Cena, F., & Gena, C. (2019). Enhancing cultural recommendations through social and linked open data. User Modeling and User-Adapted Interaction, 29(1), 121-159.   DOI
65 Banas, D., Havrilova, C., & Paralic, J. (2015, September 3-5). Combination of user profile information and collaborative filtering in recommendations. In A. Szakal (Ed.), Proceedings of the 2015 IEEE 19th International Conference on Intelligent Engineering Systems (INES) (pp. 359-363). IEEE.
66 Heitmann, B., & Hayes, C. (2010, March 22-24). Using linked data to build open, collaborative recommender systems. In D. Brickley, V. K. Chaudhri, H. Halpin, & D. McGuinness (Eds.), Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI) Spring Symposium 2010: Linked Data Meets Artificial Intelligence (pp. 76-81). AAAI Publications.
67 Alshammari, M., & Nasraoui, O. (2019, September 17-19). Augmented semantic explanations for collaborative filtering recommendations. In A. Fred, & J. Filipe (Eds.), Proceedings of the IC3K 2019: 11th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (pp. 83-88). SciTePress.
68 Pereira, C. K., Campos, F., Stroele, V., David, J. M. N., & Braga, R. (2018). BROAD-RSI - educational recommender system using social networks interactions and linked data. Journal of Internet Services and Applications, 9, 7.   DOI
69 Piao, G., & Breslin, J. G. (2016, April 4-8). Measuring semantic distance for linked open data-enabled recommender systems. In S. Ossowski (Ed.), Proceedings of the SAC '16: 31st Annual ACM Symposium on Applied Computing (pp. 315-320). Association for Computing Machinery.
70 Raynaud, T., Subercaze, J., & Laforest, F. (2018, October 22-26). Fouilla: Navigating DBpedia by topic. In A. Cuzzocrea, J. Allan, N. Paton, D. Srivastava, R. Agrawal, A. Broder, M. Zaki, S. Candan, A. Labrinidis, A. Schuster, & H. Wang (Eds.), Proceedings of the CIKM '18: 27th ACM International Conference on Information and Knowledge Management (pp. 1907-1910). Association for Computing Machinery.
71 Rowe, M. (2014, August 11-14). SemanticSVD++: Incorporating semantic taste evolution for predicting ratings. In D. Slezak, B. Dunin-Keplicz, M. Lewis, & T. Terano (Eds.), Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT) (pp. 213-220). IEEE.
72 Aggarwal, C. C. (2016). Recommender systems: The textbook. Springer.
73 Middleton, S. E., Shadbolt, N. R., & De Roure, D. C. (2004). Ontological user profiling in recommender systems. ACM Transactions on Information Systems, 22(1), 54-88.   DOI
74 Tomeo, P., Di Noia, T., de Gemmis, M., Lops, P., Semeraro, G., & Di Sciascio, E. (2015, September 16-20). Exploiting regression trees as user models for intent-aware multiattribute diversity. In T. Bogers, & M. Koolen (Eds.), Proceedings of the 2nd Workshop on New Trends on ContentBased Recommender Systems co-located with 9th ACM Conference on Recommender Systems (RecSys 2015) (vol. 1448, pp. 1-8). CEUR Workshop Proceedings.
75 Meymandpour, R., & Davis, J.G. (2015, January 27-30). Enhancing recommender systems using linked open databased semantic analysis of items. In J. G. Davis, & A. Bozzon (Eds.), Proceedings of the 3rd Australasian Web Conference (AWC 2015) (vol. 166, pp. 11-17). Australian Computer Society.
76 Palumbo, E., Rizzo, G., & Troncy, R. (2017, August 27-31). entity2rec: Learning user-item relatedness from knowledge graphs for top-N item recommendation. In P. Cremonesi, F. Ricci, S. Berkovsky, & A. Tuzhilin (Eds.), Proceedings of the RecSys '17: 11th ACM Conference on Recommender Systems (pp. 32-36). Association for Computing Machinery.
77 Srinivasan, U. S., & Mani, C. (2018). Diversity-ensured semantic movie recommendation by applying linked open data. International Journal of Intelligent Engineering & Systems, 11(2), 275-286.   DOI
78 Oliveira, J., Delgado, C., & Assaife, A. C. (2017). A recommendation approach for consuming linked open data. Expert Systems with Applications, 72, 407-420.   DOI
79 Mohamed, M. H., Khafagy, M. H., Elbeh, H., & Abdalla, A. M. (2019). Sparsity and cold start recommendation system challenges solved by hybrid feedback. International Journal of Engineering Research and Technology, 12(12), 2735-2742.
80 Nilashi, M., Asadi, S., Abumalloh, R. A., Samad, S., & Ibrahim, O. (2020). Intelligent recommender systems in the COVID-19 outbreak: The case of wearable healthcare devices. Journal of Soft Computing and Decision Support Systems, 7(4), 8-12.
81 Wenige, L., & Ruhland, J. (2018). Retrieval by recommendation: Using LOD technologies to improve digital library search. International Journal on Digital Libraries, 19(2-3), 253-269.   DOI
82 Vagliano, I., Monti, D., Scherp, A., & Morisio, M. (2017, December 4-6). Content recommendation through semantic annotation of user reviews and linked data - an extended technical report. In Association for Computing Machinery (Ed.), Proceedings of the 9th International Conference on Knowledge Capture (pp. 1-4). Association for Computing Machinery.
83 Vall, A., Dorfer, M., Eghbal-zadeh, H., Schedl, M., Burjorjee, K., & Widmer, G. (2019). Feature-combination hybrid recommender systems for automated music playlist continuation. User Modeling and User-Adapted Interaction, 29(2), 527-572.   DOI
84 Wang, H., Chen, D., & Zhang, J. (2020). Group recommendation based on hybrid trust metric. Automatika, 61(4), 694-703.   DOI
85 Xu, J., Yan, Z., Cao, G., & Zhao, J. (2018, August 17-19). Family shopping recommendation system using behavior sequence data and user profile. In ICIMCS (Ed.), Proceedings of the ICIMCS '18: 10th International Conference on Internet Multimedia Computing and Service (article no.: 41). Association for Computing Machinery.