• Title/Summary/Keyword: sparse signal recovery

Search Result 43, Processing Time 0.021 seconds

Majorization-Minimization-Based Sparse Signal Recovery Method Using Prior Support and Amplitude Information for the Estimation of Time-varying Sparse Channels

  • Wang, Chen;Fang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.10
    • /
    • pp.4835-4855
    • /
    • 2018
  • In this paper, we study the sparse signal recovery that uses information of both support and amplitude of the sparse signal. A convergent iterative algorithm for sparse signal recovery is developed using Majorization-Minimization-based Non-convex Optimization (MM-NcO). Furthermore, it is shown that, typically, the sparse signals that are recovered using the proposed iterative algorithm are not globally optimal and the performance of the iterative algorithm depends on the initial point. Therefore, a modified MM-NcO-based iterative algorithm is developed that uses prior information of both support and amplitude of the sparse signal to enhance recovery performance. Finally, the modified MM-NcO-based iterative algorithm is used to estimate the time-varying sparse wireless channels with temporal correlation. The numerical results show that the new algorithm performs better than related algorithms.

Sparse Signal Recovery Using A Tree Search (트리검색 기법을 이용한 희소신호 복원기법)

  • Lee, Jaeseok;Shim, Byonghyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.12
    • /
    • pp.756-763
    • /
    • 2014
  • In this paper, we introduce a new sparse signal recovery algorithm referred to as the matching pursuit with greedy tree search (GTMP). The tree search in our proposed method is implemented to minimize the cost function to improve the recovery performance of sparse signals. In addition, a pruning strategy is employed to each node of the tree for efficient implementation. In our performance guarantee analysis, we provide the condition that ensures the exact identification of the nonzero locations. Through empirical simulations, we show that GTMP is effective for sparse signal reconstruction and outperforms conventional sparse recovery algorithms.

Sparse Signal Recovery with Parallel Orthogonal Matching Pursuit and Its Performances (병렬OMP 기법을 통한 성긴신호 복원과 그 성능)

  • Park, Jeonghong;Jung, Bang Chul;Kim, Jong Min;Ban, Tae Won
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.8
    • /
    • pp.1784-1789
    • /
    • 2013
  • In this paper, parallel orthogonal matching pursuit (POMP) is proposed to supplement the orthogonal matching pursuit (OMP) which has been widely used as a greedy algorithm for sparse signal recovery. The process of POMP is simple but effective: (1) multiple indexes maximally correlated with the observation vector are chosen at the firest iteration, (2) the conventional OMP process is carried out in parallel for each selected index, (3) the index set which yields the minimum residual is selected for reconstructing the original sparse signal. Empirical simulations show that POMP outperforms than the existing sparse signal recovery algorithms in terms of exact recovery ratio (ERR) for sparse pattern and mean-squared error (MSE) between the estimated signal and the original signal.

Sparse Signal Recovery with Pruning-based Tree search

  • Kim, Jinhong;Shim, Byonghyo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.51-53
    • /
    • 2015
  • In this paper, we propose an efficient sparse signal recovery algorithm referred to as the matching pursuit with a tree pruning (TMP). Two key ingredients of TMP are the pre-selection to put a restriction on columns of the sensing matrix to be investigated and the tree pruning to eliminate unpromising paths from the search tree. In our analysis, we show that the sparse signal is accurately reconstructed when the sensing matrix satisfies the restricted isometry property. In our simulations, we confirm that TMP is effective in recovering sparse signals and outperforms conventional sparse recovery algorithms.

  • PDF

A Study on the Formulation of High Resolution Range Profile and ISAR Image Using Sparse Recovery Algorithm (Sparse 복원 알고리즘을 이용한 HRRP 및 ISAR 영상 형성에 관한 연구)

  • Bae, Ji-Hoon;Kim, Kyung-Tae;Yang, Eun-Jung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.4
    • /
    • pp.467-475
    • /
    • 2014
  • In this paper, we introduce a sparse recovery algorithm applied to a radar signal model, based on the compressive sensing(CS), for the formulation of the radar signatures, such as high-resolution range profile(HRRP) and ISAR(Inverse Synthetic Aperture Radar) image. When there exits missing data in observed RCS data samples, we cannot obtain correct high-resolution radar signatures with the traditional IDFT(Inverse Discrete Fourier Transform) method. However, high-resolution radar signatures using the sparse recovery algorithm can be successfully recovered in the presence of data missing and qualities of the recovered radar signatures are nearly comparable to those of radar signatures using a complete RCS data without missing data. Therefore, the results show that the sparse recovery algorithm rather than the DFT method can be suitably applied for the reconstruction of high-resolution radar signatures, although we collect incomplete RCS data due to unwanted interferences or jamming signals.

Upper Bound for L0 Recovery Performance of Binary Sparse Signals (이진 희소 신호의 L0 복원 성능에 대한 상한치)

  • Seong, Jin-Taek
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.485-486
    • /
    • 2018
  • In this paper, we consider a binary recovery framework of the Compressed Sensing (CS) problem. We derive an upper bound for $L_0$ recovery performance of a binary sparse signal in terms of the dimension N and sparsity K of signals, the number of measurements M. We show that the upper bound obtained from this work goes to the limit bound when the sensing matrix sufficiently become dense. In addition, for perfect recovery performance, if the signals are very sparse, the sensing matrices required for $L_0$ recovery are little more dense.

  • PDF

Sparse Signal Recovery via Tree Search Matching Pursuit

  • Lee, Jaeseok;Choi, Jun Won;Shim, Byonghyo
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.699-712
    • /
    • 2016
  • Recently, greedy algorithm has received much attention as a cost-effective means to reconstruct the sparse signals from compressed measurements. Much of previous work has focused on the investigation of a single candidate to identify the support (index set of nonzero elements) of the sparse signals. Well-known drawback of the greedy approach is that the chosen candidate is often not the optimal solution due to the myopic decision in each iteration. In this paper, we propose a tree search based sparse signal recovery algorithm referred to as the tree search matching pursuit (TSMP). Two key ingredients of the proposed TSMP algorithm to control the computational complexity are the pre-selection to put a restriction on columns of the sensing matrix to be investigated and the tree pruning to eliminate unpromising paths from the search tree. In numerical simulations of Internet of Things (IoT) environments, it is shown that TSMP outperforms conventional schemes by a large margin.

Sparse Signal Recovery via a Pruning-based Tree Search (트리제거 기법을 이용한 희소신호 복원)

  • Kim, Sangtae;Shim, Byonghyo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2015.11a
    • /
    • pp.1-3
    • /
    • 2015
  • In this paper, we propose a sparse signal reconstruction method referred to as the matching pursuit with a pruning-based tree search (PTS-MP). Two key ingredients of PTS-MP are the pre-selection to put a restriction on columns of the sensing matrix to be investigated and the tree pruning to eliminate unpromising paths from the search tree. In our simulations, we confirm that PTS-MP is effective in recovering sparse signals and outperforms conventional sparse recovery algorithms.

  • PDF

Genetic Algorithm based Orthogonal Matching Pursuit for Sparse Signal Recovery (희소 신호 복원을 위한 유전 알고리듬 기반 직교 정합 추구)

  • Kim, Seehyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.9
    • /
    • pp.2087-2093
    • /
    • 2014
  • In this paper, an orthogonal matching pursuit (OMP) method combined with genetic algorithm (GA), named GAOMP, is proposed for sparse signal recovery. Some recent greedy algorithms such as SP, CoSaMP, and gOMP improved the reconstruction performance by deleting unsuitable atoms at each iteration. However they still often fail to converge to the solution because the support set could not avoid the local minimum during the iterations. Mutating the candidate support set chosen by the OMP algorithm, GAOMP is able to escape from the local minimum and hence recovers the sparse signal. Experimental results show that GAOMP outperforms several OMP based algorithms and the $l_1$ optimization method in terms of exact reconstruction probability.

Sparse Signal Recovery with Parallel Orthogonal Matching Pursuit for Multiple Measurement Vectors (병렬OMP 기법을 통한 복수 측정 벡터기반 성긴 신호의 복원)

  • Park, Jeonghong;Ban, Tae Won;Jung, Bang Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2252-2258
    • /
    • 2013
  • In this paper, parallel orthogonal matching pursuit (POMP) is proposed to supplement the simultaneous orthogonal matching pursuit (S-OMP) which has been widely used as a greedy algorithm for sparse signal recovery for multiple measurement vector (MMV) problem. The process of POMP is simple but effective: (1) multiple indexes maximally correlated with the observation vector are chosen at the first iteration, (2) the conventional S-OMP process is carried out in parallel for each selected index, (3) the index set which yields the minimum residual is selected for reconstructing the original sparse signal. Empirical simulations show that POMP for MMV outperforms than the conventional S-OMP both in terms of exact recovery ratio (ERR) and mean-squared error (MSE).