• 제목/요약/키워드: sparse signal recovery

검색결과 43건 처리시간 0.022초

Majorization-Minimization-Based Sparse Signal Recovery Method Using Prior Support and Amplitude Information for the Estimation of Time-varying Sparse Channels

  • Wang, Chen;Fang, Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권10호
    • /
    • pp.4835-4855
    • /
    • 2018
  • In this paper, we study the sparse signal recovery that uses information of both support and amplitude of the sparse signal. A convergent iterative algorithm for sparse signal recovery is developed using Majorization-Minimization-based Non-convex Optimization (MM-NcO). Furthermore, it is shown that, typically, the sparse signals that are recovered using the proposed iterative algorithm are not globally optimal and the performance of the iterative algorithm depends on the initial point. Therefore, a modified MM-NcO-based iterative algorithm is developed that uses prior information of both support and amplitude of the sparse signal to enhance recovery performance. Finally, the modified MM-NcO-based iterative algorithm is used to estimate the time-varying sparse wireless channels with temporal correlation. The numerical results show that the new algorithm performs better than related algorithms.

트리검색 기법을 이용한 희소신호 복원기법 (Sparse Signal Recovery Using A Tree Search)

  • 이재석;심병효
    • 한국통신학회논문지
    • /
    • 제39A권12호
    • /
    • pp.756-763
    • /
    • 2014
  • 본 논문에서는 트리검색 기반의 GTMP (matching pursuit with greedy tree search)이라는 새로운 희소신호 복원기법을 제안한다. 트리검색은 비용함수 (cost function)를 최소화함으로써 희소신호 복원 성능을 향상시키기 위해 적용하였다. 또한 각 노드마다 트리제거 (tree pruning)기법을 이용하여 효율적인 알고리듬을 개발하였다. 본 논문에서는 알고리듬의 성능분석을 통해 희소신호에서 영(0)이 아닌 값의 위치를 정확히 찾아내는 조건을 도출하였다. 그리고 실험을 통해 GTMP가 기존의 희소신호 복원기법에 비해 성능이 향상되었음을 보였다.

병렬OMP 기법을 통한 성긴신호 복원과 그 성능 (Sparse Signal Recovery with Parallel Orthogonal Matching Pursuit and Its Performances)

  • 박정홍;정방철;김종민;반태원
    • 한국정보통신학회논문지
    • /
    • 제17권8호
    • /
    • pp.1784-1789
    • /
    • 2013
  • 본 논문에서는 성긴 신호의 복원을 위하여 기존의 직교매칭퍼슛 (orthogonal matching pursuit, OMP) 기술을 보완한 Parallel OMP (POMP) 기법을 제안하고 성능을 분석한다. POMP알고리즘의 과정은 간단하지만 기존 OMP와 비교하여 더 좋은 성능을 보이는 알고리즘이다. POMP 는 첫 번째 반복 과정에서 관찰 행렬과 상관도가 높은 인덱스 집합을 여러 개 선택한다. 선택된 각각의 인덱스를 첫 번째 인덱스로 하는 각각의 POMP 블록에서 OMP 알고리즘 기법이 병렬적으로 동작한다. 마지막으로 신호 복원을 위해 가장 작은 잔류 오차(residual)를 갖는 POMP블록의 인덱스 집합을 선택한다. 컴퓨터 시뮬레이션을 통해 제안된 POMP가 기존의 신호 복원 기술에 비하여 완벽복원비율과 평균 제곱 오차 (MSE) 측면에서 좋은 성능을 보임을 확인하였고, 이미지복원에 있어서는 눈으로 확인 가능할 정도의 성능 개선을 확인하였다.

Sparse Signal Recovery with Pruning-based Tree search

  • Kim, Jinhong;Shim, Byonghyo
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2015년도 추계학술대회
    • /
    • pp.51-53
    • /
    • 2015
  • In this paper, we propose an efficient sparse signal recovery algorithm referred to as the matching pursuit with a tree pruning (TMP). Two key ingredients of TMP are the pre-selection to put a restriction on columns of the sensing matrix to be investigated and the tree pruning to eliminate unpromising paths from the search tree. In our analysis, we show that the sparse signal is accurately reconstructed when the sensing matrix satisfies the restricted isometry property. In our simulations, we confirm that TMP is effective in recovering sparse signals and outperforms conventional sparse recovery algorithms.

  • PDF

Sparse 복원 알고리즘을 이용한 HRRP 및 ISAR 영상 형성에 관한 연구 (A Study on the Formulation of High Resolution Range Profile and ISAR Image Using Sparse Recovery Algorithm)

  • 배지훈;김경태;양은정
    • 한국전자파학회논문지
    • /
    • 제25권4호
    • /
    • pp.467-475
    • /
    • 2014
  • 본 논문에서는 1차원 레이더 특성(signature)인 고해상도 거리 측면도(HRRP)와 2차원 레이더 특성인 ISAR 영상을 형성하기 위하여 CS(Compressive Sensing) 기반의 레이더 신호 모델을 적용한 sparse 복원(sparse recovery) 알고리즘을 소개하고자 한다. 만약, 관측된 RCS(Radar Cross Section) 데이터 샘플에서 데이터 손실이 발생할 경우, 기존의 discrete Fourier transform(DFT) 방식으로는 올바른 고해상도의 레이더 특성들을 얻을 수 없다. 하지만, 데이터 손실이 존재하더라도 상기 sparse 복원 알고리즘을 적용하면 고해상도의 레이더 특성을 성공적으로 복원할 수 있고, 원래 광대역의 RCS 데이터를 이용한 레이더 특성과 동등하게 고해상도를 유지할 수 있다. 따라서, 본 논문에서 보여준 결과에서와 같이 원하지 않는 간섭신호나 전파 교란 신호에 의해 데이터 손실이 발생한 RCS 데이터를 수집하더라도, sparse 복원 알고리즘을 이용하면 기존 DFT 방식과 달리 고해상도의 레이더 특성을 성공적으로 복원할 수 있음을 관찰할 수 있었다.

이진 희소 신호의 L0 복원 성능에 대한 상한치 (Upper Bound for L0 Recovery Performance of Binary Sparse Signals)

  • 성진택
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2018년도 춘계 종합학술대회 논문집
    • /
    • pp.485-486
    • /
    • 2018
  • In this paper, we consider a binary recovery framework of the Compressed Sensing (CS) problem. We derive an upper bound for $L_0$ recovery performance of a binary sparse signal in terms of the dimension N and sparsity K of signals, the number of measurements M. We show that the upper bound obtained from this work goes to the limit bound when the sensing matrix sufficiently become dense. In addition, for perfect recovery performance, if the signals are very sparse, the sensing matrices required for $L_0$ recovery are little more dense.

  • PDF

Sparse Signal Recovery via Tree Search Matching Pursuit

  • Lee, Jaeseok;Choi, Jun Won;Shim, Byonghyo
    • Journal of Communications and Networks
    • /
    • 제18권5호
    • /
    • pp.699-712
    • /
    • 2016
  • Recently, greedy algorithm has received much attention as a cost-effective means to reconstruct the sparse signals from compressed measurements. Much of previous work has focused on the investigation of a single candidate to identify the support (index set of nonzero elements) of the sparse signals. Well-known drawback of the greedy approach is that the chosen candidate is often not the optimal solution due to the myopic decision in each iteration. In this paper, we propose a tree search based sparse signal recovery algorithm referred to as the tree search matching pursuit (TSMP). Two key ingredients of the proposed TSMP algorithm to control the computational complexity are the pre-selection to put a restriction on columns of the sensing matrix to be investigated and the tree pruning to eliminate unpromising paths from the search tree. In numerical simulations of Internet of Things (IoT) environments, it is shown that TSMP outperforms conventional schemes by a large margin.

트리제거 기법을 이용한 희소신호 복원 (Sparse Signal Recovery via a Pruning-based Tree Search)

  • 김상태;심병효
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2015년도 추계학술대회
    • /
    • pp.1-3
    • /
    • 2015
  • In this paper, we propose a sparse signal reconstruction method referred to as the matching pursuit with a pruning-based tree search (PTS-MP). Two key ingredients of PTS-MP are the pre-selection to put a restriction on columns of the sensing matrix to be investigated and the tree pruning to eliminate unpromising paths from the search tree. In our simulations, we confirm that PTS-MP is effective in recovering sparse signals and outperforms conventional sparse recovery algorithms.

  • PDF

희소 신호 복원을 위한 유전 알고리듬 기반 직교 정합 추구 (Genetic Algorithm based Orthogonal Matching Pursuit for Sparse Signal Recovery)

  • 김시현
    • 한국정보통신학회논문지
    • /
    • 제18권9호
    • /
    • pp.2087-2093
    • /
    • 2014
  • 본 논문에서는 압축적으로 센싱된 희소 신호를 복원하기 위한 유전 알고리듬(GA)에 기반한 직교 정합 추구 방법(GAOMP)을 제안한다. 최근에 제안된 SP, CoSaMP, gOMP 등은 매 반복 단계에서 부적절한 atom을 제거하여 희소 신호의 복원 성능을 개선하였다. 그러나 support set이 국소 최저에 빠져 신호 복원에 실패하는 경우가 발생한다. 제안된 GAOMP는 유전 알고리듬의 중요 연산자인 변이를 통해 support set이 국소 최저를 벗어날 수 있도록 도와주어 희소 신호의 복원 성능을 향상시킨다. 모의 실험을 통해 GAOMP가 여러 OMP 기반 알고리듬과 $l_1$ 최적화보다 우수한 신호 복원 성능을 보임을 알 수 있다.

병렬OMP 기법을 통한 복수 측정 벡터기반 성긴 신호의 복원 (Sparse Signal Recovery with Parallel Orthogonal Matching Pursuit for Multiple Measurement Vectors)

  • 박정홍;반태원;정방철
    • 한국정보통신학회논문지
    • /
    • 제17권10호
    • /
    • pp.2252-2258
    • /
    • 2013
  • 본 논문에서는 복수측정벡터 환경에서 성긴 신호의 복원을 위하여 널리 사용되고 있는 Simultaneous orthogonal matching pursuit (S-OMP) 기술을 보완한 병렬 OMP 기법을 제안하고 그 성능을 분석한다. Parallel orthogonal matching pursuit(POMP) 알고리즘은 간단하지만 성능면에서 매우 효과적이다. 제안된 병렬 OMP알고리즘은 첫 번째 반복 과정에서 관찰 행렬과 상관도가 높은 인덱스 집합을 여러 개 (M) 선택한다. 그 후, 선택된 각각의 인덱스를 첫 번째 인덱스로 하는 각 병렬 OMP블록에서 S-OMP 알고리즘 기법이 병렬적으로 동작한다. 마지막으로 입력된 신호 복원을 위해 잔차가 가장 작은 POMP블록의 인덱스 집합을 선택한다. 컴퓨터 시뮬레이션을 통해 100%복원 가능한 sparsity 개수가 기존의 S-OMP 기법에 비해 M이 증가함에 따라 향상되는 것을 확인했으며, 평균 제곱 오차 측면에서도 SNR에 상관없이 성능 개선효과가 있음을 확인하였다.