• Title/Summary/Keyword: sparse measurements

Search Result 47, Processing Time 0.03 seconds

lp-norm regularization for impact force identification from highly incomplete measurements

  • Yanan Wang;Baijie Qiao;Jinxin Liu;Junjiang Liu;Xuefeng Chen
    • Smart Structures and Systems
    • /
    • v.34 no.2
    • /
    • pp.97-116
    • /
    • 2024
  • The standard l1-norm regularization is recently introduced for impact force identification, but generally underestimates the peak force. Compared to l1-norm regularization, lp-norm (0 ≤ p < 1) regularization, with a nonconvex penalty function, has some promising properties such as enforcing sparsity. In the framework of sparse regularization, if the desired solution is sparse in the time domain or other domains, the under-determined problem with fewer measurements than candidate excitations may obtain the unique solution, i.e., the sparsest solution. Considering the joint sparse structure of impact force in temporal and spatial domains, we propose a general lp-norm (0 ≤ p < 1) regularization methodology for simultaneous identification of the impact location and force time-history from highly incomplete measurements. Firstly, a nonconvex optimization model based on lp-norm penalty is developed for regularizing the highly under-determined problem of impact force identification. Secondly, an iteratively reweighed l1-norm algorithm is introduced to solve such an under-determined and unconditioned regularization model through transforming it into a series of l1-norm regularization problems. Finally, numerical simulation and experimental validation including single-source and two-source cases of impact force identification are conducted on plate structures to evaluate the performance of lp-norm (0 ≤ p < 1) regularization. Both numerical and experimental results demonstrate that the proposed lp-norm regularization method, merely using a single accelerometer, can locate the actual impacts from nine fixed candidate sources and simultaneously reconstruct the impact force time-history; compared to the state-of-the-art l1-norm regularization, lp-norm (0 ≤ p < 1) regularization procures sufficiently sparse and more accurate estimates; although the peak relative error of the identified impact force using lp-norm regularization has a decreasing tendency as p is approaching 0, the results of lp-norm regularization with 0 ≤ p ≤ 1/2 have no significant differences.

A Study on the Reconstruction of a Frame Based Speech Signal through Dictionary Learning and Adaptive Compressed Sensing (Adaptive Compressed Sensing과 Dictionary Learning을 이용한 프레임 기반 음성신호의 복원에 대한 연구)

  • Jeong, Seongmoon;Lim, Dongmin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1122-1132
    • /
    • 2012
  • Compressed sensing has been applied to many fields such as images, speech signals, radars, etc. It has been mainly applied to stationary signals, and reconstruction error could grow as compression ratios are increased by decreasing measurements. To resolve the problem, speech signals are divided into frames and processed in parallel. The frames are made sparse by dictionary learning, and adaptive compressed sensing is applied which designs the compressed sensing reconstruction matrix adaptively by using the difference between the sparse coefficient vector and its reconstruction. Through the proposed method, we could see that fast and accurate reconstruction of non-stationary signals is possible with compressed sensing.

An Efficient Model Based on Smoothed ℓ0 Norm for Sparse Signal Reconstruction

  • Li, Yangyang;Sun, Guiling;Li, Zhouzhou;Geng, Tianyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.4
    • /
    • pp.2028-2041
    • /
    • 2019
  • Compressed sensing (CS) is a new theory. With regard to the sparse signal, an exact reconstruction can be obtained with sufficient CS measurements. Nevertheless, in practical applications, the transform coefficients of many signals usually have weak sparsity and suffer from a variety of noise disturbances. What's worse, most existing classical algorithms are not able to effectively solve this issue. So we proposed an efficient algorithm based on smoothed ${\ell}_0$ norm for sparse signal reconstruction. The direct ${\ell}_0$ norm problem is NP hard, but it is unrealistic to directly solve the ${\ell}_0$ norm problem for the reconstruction of the sparse signal. To select a suitable sequence of smoothed function and solve the ${\ell}_0$ norm optimization problem effectively, we come up with a generalized approximate function model as the objective function to calculate the original signal. The proposed model preserves sharper edges, which is better than any other existing norm based algorithm. As a result, following this model, extensive simulations show that the proposed algorithm is superior to the similar algorithms used for solving the same problem.

Multiple Candidate Matching Pursuit (다중 후보 매칭 퍼슛)

  • Kwon, Seokbeop;Shim, Byonghyo
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.954-963
    • /
    • 2012
  • As a greedy algorithm reconstructing the sparse signal from underdetermined system, orthogonal matching pursuit (OMP) algorithm has received much attention. In this paper, we multiple candidate matching pursuit (MuCaMP), which builds up candidate support set in every iteration and uses the minimum residual at last iteration. Using the restricted isometry property (RIP), we derive the sufficient condition for MuCaMP to recover the sparse signal exactly. The MuCaMP guarantees to reconstruct the K-sparse signal when the sensing matrix satisfies the RIP constant ${\delta}_{N+K}<\frac{\sqrt{N}}{\sqrt{K}+3\sqrt{N}}$. In addition, we show a recovery performance both noiseless and noisy measurements.

Impact identification and localization using a sample-force-dictionary - General Theory and its applications to beam structures

  • Ginsberg, Daniel;Fritzen, Claus-Peter
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.3
    • /
    • pp.195-214
    • /
    • 2016
  • Monitoring of impact loads is a very important technique in the field of structural health monitoring (SHM). However, in most cases it is not possible to measure impact events directly, so they need to be reconstructed. Impact load reconstruction refers to the problem of estimating an input to a dynamic system when the system output and the impulse response function are usually known. Generally this leads to a so called ill-posed inverse problem. It is reasonable to use prior knowledge of the force in order to develop more suitable reconstruction strategies and to increase accuracy. An impact event is characterized by a short time duration and a spatial concentration. Moreover the force time history of an impact has a specific shape, which also can be taken into account. In this contribution these properties of the external force are employed to create a sample-force-dictionary and thus to transform the ill-posed problem into a sparse recovery task. The sparse solution is acquired by solving a minimization problem known as basis pursuit denoising (BPDN). The reconstruction approach shown here is capable to estimate simultaneously the magnitude of the impact and the impact location, with a minimum number of accelerometers. The possibility of reconstructing the impact based on a noisy output signal is first demonstrated with simulated measurements of a simple beam structure. Then an experimental investigation of a real beam is performed.

Compressed Sensing of Low-Rank Matrices: A Brief Survey on Efficient Algorithms (낮은 계수 행렬의 Compressed Sensing 복원 기법)

  • Lee, Ki-Ryung;Ye, Jong-Chul
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.5
    • /
    • pp.15-24
    • /
    • 2009
  • Compressed sensing addresses the recovery of a sparse vector from its few linear measurements. Recently, the success for the vector case has been extended to the matrix case. Compressed sensing of low-rank matrices solves the ill-posed inverse problem with fie low-rank prior. The problem can be formulated as either the rank minimization or the low-rank approximation. In this paper, we survey recently proposed efficient algorithms to solve these two formulations.

Multipath Matching Pursuit Using Prior Information (사전 정보를 이용한 다중경로 정합 추구)

  • Min, Byeongcheon;Park, Daeyoung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.6
    • /
    • pp.628-630
    • /
    • 2016
  • Compressive sensing can recover an original sparse signal from a few measurements. Its performance is affected by the number of non-zero elements in the signal. The knowledge of partial locations of non-zero elements can improve the recovery performance. In this paper, we apply the partial location knowledge to the multipath matching pursuit. The numerical results show it improves the signal recovery performance and the channel estimation performance in the ITU-VB channel.

A method of X-ray source spectrum estimation from transmission measurements based on compressed sensing

  • Liu, Bin;Yang, Hongrun;Lv, Huanwen;Li, Lan;Gao, Xilong;Zhu, Jianping;Jing, Futing
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1495-1502
    • /
    • 2020
  • A new method of X-ray source spectrum estimation based on compressed sensing is proposed in this paper. The algorithm K-SVD is applied for sparse representation. Nonnegative constraints are added by modifying the L1 reconstruction algorithm proposed by Rosset and Zhu. The estimation method is demonstrated on simulated spectra typical of mammography and CT. X-ray spectra are simulated with the Monte Carlo code Geant4. The proposed method is successfully applied to highly ill conditioned and under determined estimation problems with a good performance of suppressing noises. Results with acceptable accuracies (MSE < 5%) can be obtained with 10% Gaussian white noises added to the simulated experimental data. The biggest difference between the proposed method and the existing methods is that multiple prior knowledge of X-ray spectra can be included in one dictionary, which is meaningful for obtaining the true X-ray spectrum from the measurements.

Performance Analysis of Compressed Sensing Given Insufficient Random Measurements

  • Rateb, Ahmad M.;Syed-Yusof, Sharifah Kamilah
    • ETRI Journal
    • /
    • v.35 no.2
    • /
    • pp.200-206
    • /
    • 2013
  • Most of the literature on compressed sensing has not paid enough attention to scenarios in which the number of acquired measurements is insufficient to satisfy minimal exact reconstruction requirements. In practice, encountering such scenarios is highly likely, either intentionally or unintentionally, that is, due to high sensing cost or to the lack of knowledge of signal properties. We analyze signal reconstruction performance in this setting. The main result is an expression of the reconstruction error as a function of the number of acquired measurements.

Electron collision cross sections of molecules relevant to plasma processing

  • Jo, Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.34-34
    • /
    • 2010
  • Absolute electron-impact cross sections for molecular targets including their radicals are important in developing plasma reactors and testing various plasma processing gases. However, low-energy electron collision data for these gases are sparse and only the limited cross section data are available. In this presentation, the methods and the status of measurements of, mainly, absolute elastic cross sections for electron-polyatomic molecule collisions will be discussed with recent results from Chungnam National University. Elastic cross sections are essential for the absolute scale conversion of inelastic cross sections, as well as for testing computational methods.

  • PDF