• 제목/요약/키워드: spark-plasma sintering

검색결과 409건 처리시간 0.024초

자기펄스성형법 및 통전가압소결법의 연속공정을 이용한 고밀도 나노 알루미나 세라믹의 제조 (Fabrication of Nanostructured Alumina by the Combined Processes of Magnetic Pulsed Compaction (MPC) and Spark Plasma Sintering (SPS))

  • 이종극;홍순직;이민구;이창규
    • 한국분말재료학회지
    • /
    • 제12권5호
    • /
    • pp.345-350
    • /
    • 2005
  • In this study the nanostructured ${\alpha}-Al_{2}O_3$ ceramics have been fabricated by the combined application of magnetic pulsed compaction (MPC) and subsequent spark plasma sintering (SPS), and their density and hardness properties were investigated. The ${\alpha}-Al_{2}O_3$ prepared by the combined processes showed an increase by $8.4\%$ in density, approaching the value close to the true density, and an enhancement by $210\~400\;Hv$ in hardness, compared to those fabricated by MPC or static compaction method followed by sintering treatment.

방전플라즈마 소결 공정을 이용한 WC-6wt.%Co 소결체 제조 및 기계적 특성 평가 (Fabrication and Mechanical Properties of ultra fine WC-6wt.%Co by Spark Plasma Sintering Process)

  • 박현국;이승민;윤희준;방기상;오익현
    • 대한금속재료학회지
    • /
    • 제49권1호
    • /
    • pp.40-45
    • /
    • 2011
  • Using the spark plasma sintering process (SPS process), the WC-6wt.%Co hard materials were densified using an ultra fine WC-Co powder. The WC-Co was almost completely dense with a relative density of up to 100% after the simultaneous application of a pressure of 60 MPa and the DC pulse current for 3 min without any significant change in the grain size. The average grain size of WC that was produced through this experiment was about $0.2{\sim}0.8{\mu}m$. The hardness and fracture toughness were about $1816kg/mm^2$ and $15.1MPa{\cdot}m^{1/2}$, respectively, for 60 MPa at $1200^{\circ}C$.

Fabrication and Densification of a Nanocrystalline CoSi Compound by Mechanical Alloying and Spark Plasma Sintering

  • Chung-Hyo Lee
    • 한국재료학회지
    • /
    • 제33권3호
    • /
    • pp.101-105
    • /
    • 2023
  • A mixture of elemental Co50Si50 powders was subjected to mechanical alloying (MA) at room temperature to prepare a CoSi thermoelectric compound. Consolidation of the Co50Si50 mechanically alloyed powders was performed in a spark plasma sintering (SPS) machine using graphite dies up to 800 ℃ and 1,000 ℃ under 50 MPa. We have revealed that a nanocrystalline CoSi thermoelectric compound can be produced from a mixture of elemental Co50Si50 powders by mechanical alloying after 20 hours. The average grain size estimated from a Hall plot of the CoSi intermetallic compound prepared after 40 hours of MA was 65 nm. The degree of shrinkage of the consolidated samples during SPS became significant at about 450 ℃. All of the compact bodies had a high relative density of more than 94 % with a metallic glare on the surface. X-ray diffraction data showed that the SPS compact produced by sintering mechanically alloyed powders for 40-hours up to 800 ℃ consisted of only nanocrystalline CoSi with a grain size of 110 nm.

Correlation of Sintering Parameters with Density and Hardness of Nano-sized Titanium Nitride reinforced Titanium Alloys using Neural Networks

  • Maurya, A.K.;Narayana, P.L;Kim, Hong In;Reddy, N.S.
    • 한국분말재료학회지
    • /
    • 제27권5호
    • /
    • pp.365-372
    • /
    • 2020
  • Predicting the quality of materials after they are subjected to plasma sintering is a challenging task because of the non-linear relationships between the process variables and mechanical properties. Furthermore, the variables governing the sintering process affect the microstructure and the mechanical properties of the final product. Therefore, an artificial neural network modeling was carried out to correlate the parameters of the spark plasma sintering process with the densification and hardness values of Ti-6Al-4V alloys dispersed with nano-sized TiN particles. The relative density (%), effective density (g/㎤), and hardness (HV) were estimated as functions of sintering temperature (℃), time (min), and composition (change in % TiN). A total of 20 datasets were collected from the open literature to develop the model. The high-level accuracy in model predictions (>80%) discloses the complex relationships among the sintering process variables, product quality, and mechanical performance. Further, the effect of sintering temperature, time, and TiN percentage on the density and hardness values were quantitatively estimated with the help of the developed model.

SPS 공정 변수의 최적화에 의한 Pure Cu와 Cu-3vol%CNT composite의 미세구조와 소재특성 (Materials Characterization and the Microstructure of Pure Cu and Cu-3vol%CNT Composite Fabricated From Optimization of SPS Processing Variables)

  • 이희창;김혜성
    • 열처리공학회지
    • /
    • 제33권4호
    • /
    • pp.185-192
    • /
    • 2020
  • In this study, materials characterization of pure copper and copper based carbon nano-tube composite prepared by powder metallurgy method were investigated. Prior to evaluate materials characterization, spark plasma sintering processing variables such as sintering temperature, pressure, thickness and diameter of compacts was optimized to ensure the microstructure and materials property of pure Cu and Cu-CNT composite. In addition, corrosion behavior of Cu-based CNT composite produced by powder sintering method was investigated. It was confirmed from this study that the corroded surfaces of the composite shows less dissolution compared with pure copper in 3.5 wt% NaCl solution. The measured corrosion current density (Icorr) indicates improved corrosion property of Cu based composite containing small additions of CNTs in chloride containing media. Micro-galvanic activity between Cu and CNT was not observed in given sintering condition.

스퍼터링 타겟재의 응용을 목적으로 하는 탄탈륨 소결체의 제작 및 평가 (Fabrication and Evaluation of Tantalum Compacts for Sputtering Target Application)

  • 장세훈;최정철;최세원;오익현
    • 한국재료학회지
    • /
    • 제18권4호
    • /
    • pp.181-186
    • /
    • 2008
  • In this study, tantalum (Ta) compacts were fabricated in a spark plasma sintering (SPS) process and their microstructure and mechanical properties were investigated. Ta compacts with a density of 99% were successfully fabricated by controlling the sintering conditions of the current and the temperature. The density and hardness were increased as the sintering temperature increased. The $Ta_2C$ compound was observed at the surface of the compacts due to the contact between the Ta powder and graphite mold during the sintering process. The main fracture mode showed a mixed type with intergranular and transgranular modes having some roughness.

Research on Two Sintered Techniques of Nanometer WC-Co Powder

  • Sun, Lan;Jia, Chengchang;Tang, Hua
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.529-530
    • /
    • 2006
  • This paper concerned with SPS (spark plasma sintering), hot pressing of sinter nanometer WC-Co powder and discussed the density, hardness, microstructures and grain sizes of the alloys sintered. The results showed that the two sintered techniques could produce high density alloys and play well on the grain growth, but SPS could lower the sintering temperature and shorten sintering time. Besides, the hardness of the sintered cemented alloys that was dependent on the grain size and densification could also be improved.

  • PDF

가스분무법에 의한 Fe계 비정질 분말의 제조와 볼밀링공정에 의한 연질 Cu분말과의 복합화 및 SPS 거동 (II) - II. 복합분말의 SPS와 특성 - (Production of Fe Amorphous Powders by Gas-Atomization Process and Subsequent Spark Plasma Sintering of Fe amorphous-ductile Cu Composite Powder Produced by Ball-milling Process (II) - II. SPS Behaviors of Composite Powders and their Characteristics -)

  • 김진천;김지순;김휘준;김정곤
    • 한국분말재료학회지
    • /
    • 제16권5호
    • /
    • pp.326-335
    • /
    • 2009
  • Fe based (Fe$_{68.2}$C$_{5.9}$Si$_{3.5}$B$_{6.7}$P$_{9.6}$Cr$_{2.1}$Mo$_{2.0}$Al$_{2.0}$) amorphous powder, which is a composition of iron blast cast slag, were produced by a gas atomization process, and sequently mixed with ductile Cu powder by a mechanical ball milling process. The Fe-based amorphous powders and the Fe-Cu composite powders were compacted by a spark plasma sintering (SPS) process. Densification of the Fe amorphous-Cu composited powders by spark plasma sintering of was occurred through a plastic deformation of the each amorphous powder and Cu phase. The SPS samples milled by AGO-2 under 500 rpm had the best homogeneity of Cu phase and showed the smallest Cu pool size. Micro-Vickers hardness of the as-SPSed specimens was changed with the milling processes.

SPS법을 이용한 CuZnAl계 형상기억합금의 제조 (Manufacturing of Cu-Zn-Al shape memory alloy using spark plasma sintering)

  • 박노진;이인성;조경식;김성진
    • 한국결정성장학회지
    • /
    • 제12권4호
    • /
    • pp.172-177
    • /
    • 2002
  • CuZnAl계 형상기억합금은 경제성, 열간 가공성 등이 우수하며 변태온도의 조절이 쉬운 등 여러 장점을 가지고 있으나, 열간 가공 중에 결정립이 쉽게 커지며, 취성이 심하고, 열이력에 대해서 형상기억 효과가 빨리 감소되는 등의 단점이 있다. 이러한 단점들은 결정립크기를 미세화함으로써 어느 정도 해소할 수 있다고 알려져 있다. 본 연구에서는 Cu-24.78Zn-9.11Al(at.%)과 Cu-13.22Zn-17.24Al(at.%)의 조성을 갖으며 비교적 작은 결정립크기를 갖는 형상기억합금을 99.9% 이상의 순도를 갖는 Cu, Zn 및 Al원소분말을 이용하여 SPS(spark plasma sintering) 방법으로 제조하였다. SPS 공정을 통하여 원소분말을 이용한 합금화가 가능함을 확인하였으며, 75-150 $\mu \textrm{m}$ 크기의 원소분말을 이용하여 제조한 경우, 두 조성 모두에서 약 70$\mu$m 의 결정립크기를 얻을 수 있었으며, 조성에 따라 상온에서 오스테나이트 단상 혹은 마르텐사이트 단상을 나타냄을 확인하였다.

방전 플라즈마 소결(Spark Plasma Sintering) 방법에 의해 제조된 Nb-Si-B계 합금의 미세조직 특성 (Microstructure Characterization of Nb-Si-B alloys Prepared by Spark Plasma Sintering Process)

  • 김상환;김남우;정영근;오승탁;김영도;이성;석명진
    • 한국분말재료학회지
    • /
    • 제22권6호
    • /
    • pp.426-431
    • /
    • 2015
  • Microstructural examination of the Nb-Si-B alloys at Nb-rich compositions is performed. The Nb-rich corner of the Nb-Si-B system is favorable in that the constituent phases are Nb (ductile and tough phase with high melting temperature) and $T_2$ phase (very hard intermetallic compound with favorable oxidation resistance) which are good combination for high temperature structural materials. The samples containing compositions near Nb-rich corner of the Nb-Si-B ternary system are prepared by spark plasma sintering (SPS) process using $T_2$ and Nb powders. $T_2$ bulk phase is made in arc furnace by melting the Nb slug and the Si-B powder compact. The $T_2$ bulk phase was subsequently ball-milled to powders. SPS is performed at $1300^{\circ}C$ and $1400^{\circ}C$, depending on the composition, under 30 MPa for 600s, to produce disc-shaped specimen with 15 mm in diameter and 3 mm high. Hardness tests (Rockwell A-scale and micro Vickers) are carried out to estimate the mechanical property.