• 제목/요약/키워드: spacecraft

검색결과 1,068건 처리시간 0.027초

FHLH를 매개로 한 심우주 우주선 원격 제어 신호 중계 (Relay of Remote Control Signal for Spacecraft in Deep Space via FHLH)

  • 구철회;김형신
    • 한국항공우주학회지
    • /
    • 제48권4호
    • /
    • pp.295-301
    • /
    • 2020
  • 심우주를 항행하고 있는 우주선에 이상이 발생했을 때 지상-우주선 간 비상 통신 채널은 우주선의 상태를 파악하고 문제를 수정하기 위해 필수적이다. 복구 명령은 보통 길고 복잡한 명령들로 구성되어 있기 때문에 번들 라우팅에 기반한 지연 허용 네트워크 기술의 도움이 필요하다. 우주 패킷 프로토콜을 근간으로 구축된 심우주 우주선 통신 시스템은 지연 허용 네트워크에 의한 통신 서비스를 이용할 수 없기 때문에 우주 데이터 시스템 자문 위원회 커뮤니티에서는 first-hop last-hop 개념의 구체화 및 실용화를 시작하고 있다. 본 논문에서는 달 주변 환경에서 first-hop last-hop의 개념을 적용하였으며, 이는 향후 지연 허용 네트워크 및 우주 패킷 프로토콜 간 중계 개념을 구체화하고 실용화하는데 기여할 것으로 예상한다.

Differential Geometric Approach to Sliding Mode Control of Spacecraft Attitude Tracking

  • Cheon, Yee-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1599-1603
    • /
    • 2004
  • Based on the idea that nonlinear PWM controller design can be directly applied to the attitude tracking problem of thruster-controlled spacecraft because it constitutes a sub-class of nonlinear PWM controlled system, nonlinear and output error feedback PWM controlled system is considered to describe the behavior of thruster-controlled spacecraft, and to determine actual thruster on-time which guarantees system stability. A differential geometric approach is utilized to show an asymptotical stability of average PWM system, which finally guarantees the stability of closed loop PWM controlled system. Simulation results show that the motions of PWM controlled system occurs very closely around those of the average model of PWM controlled system.

  • PDF

Spacecraft Attitude Control with a Two-axis Variable Speed Control Momentum Gyro

  • Bang, Hyo-Choong;Park, Young-Woong;Lee, Jung-Shin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1747-1753
    • /
    • 2004
  • CMG(Control Momentum Gyro) is a control device being used for spacecraft attitude control constructing relatively large amount of torque compared to conventional body-fixed reaction wheels. The CMG produces gyroscopic control torque by continuously varying the angular momentum vector direction with respect to the spacecraft body. The VSCMG(Variable Speed Control Momentum Gyro) has favorable advantages with variable speed to lead to better control authority as well as singularity avoidance capability. Attitude dynamics with a VSCMG mounted on a two-axis gimbal system are derived in this study. The dynamic equation may be considered as an extension of the single-axis counterpart. Also, a feedback control law design is addressed in conjunction with the dynamic equations of motion.

  • PDF

Spacecraft Guidance Algorithms for Asteroid Intercept and Rendezvous Missions

  • Hawkins, Matt;Guo, Yanning;Wie, Bong
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권2호
    • /
    • pp.154-169
    • /
    • 2012
  • This paper presents a comprehensive review of spacecraft guidance algorithms for asteroid intercept and rendezvous missions. Classical proportional navigation (PN) guidance is reviewed first, followed by pulsed PN guidance, augmented PN guidance, predictive feedback guidance, Lambert guidance, and other guidance laws based on orbit perturbation theory. Optimal feedback guidance laws satisfying various terminal constraints are also discussed. Finally, the zero-effort-velocity (ZEV) error, analogous to the well-known zero-effort-miss (ZEM) distance, is introduced, leading to a generalized ZEM/ZEV guidance law. These various feedback guidance laws can be easily applied to real asteroid intercept and rendezvous missions. However, differing mission requirements and spacecraft capabilities will require continued research on terminal-phase guidance laws.

Solar Sails: Technology And Demonstration Status

  • Johnson, Les;Young, Roy;Barnes, Nathan;Friedman, Louis;Lappas, Vaios;McInnes, Colin
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권4호
    • /
    • pp.421-427
    • /
    • 2012
  • Solar Sail propulsion has been validated in space (IKAROS, 2010) and soon several more solar-sail propelled spacecraft will be flown. Using sunlight for spacecraft propulsion is not a new idea. First proposed by Frederick Tsander and Konstantin Tsiolkovsky in the 1920's, NASA's Echo 1 balloon, launched in 1960, was the first spacecraft for which the effects of solar photon pressure were measured. Solar sails reflect sunlight to achieve thrust, thus eliminating the need for costly and often very-heavy fuel. Such "propellantless" propulsion will enable whole new classes of space science and exploration missions previously not considered possible due to the propulsive-intense maneuvers and operations required.

위성 탑재 센서의 정렬 측정 및 보정에 관한 연구 (A Study on Alignment Measurement and Compensation for Spacecraft Sensors)

  • 이병기;김영윤;윤용식
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.537-540
    • /
    • 2005
  • The attitude control, sensors and camera installed on the spacecraft should be located according to the system alignment requirement. The alignment measurement requirement accuracy for the sensors should be below $\pm$0.1. Therefore, Alignment Measurement System which is combined theodolite, Rotating table and digital inclinometer etc., should be used. As the measurement accuracy is required very precise, the appropriate measurement procedure and alignment angle measurement, calculation and shimming work should is accomplished. Consequently, this paper is accomplished the works to align the measurement requirement accuracy throughout alignment measurement and shimming work of installed module and sensor

  • PDF

Lyapunov 재설계 기법을 이용한 우주비행체 강인 자세제어기 설계 (A Robust Attitude Controller Design Using Lyapunov Redesign Technique for Spacecraft)

  • 남헌성;유준
    • 제어로봇시스템학회논문지
    • /
    • 제8권4호
    • /
    • pp.313-318
    • /
    • 2002
  • A robust attitude controller using Lyapunov redesign technique for spacecraft is proposed. In this controller, qua- ternion feedback is considered to have the attitude maneuver capability very close to the eigen-axis rotation. The controller consists of three parts: the nominal feedback parts which is a PD-type controller for the nominal system without uncertainties, the additional term compensating for the gyroscopic motion, and the third part for ensuring robustness to uncertainties. Lyapunov stability criteria is applied to stability analysis. The performance of the proposed controller is demonstrated via computer simulation.

KOMPSAT-2 Fault and Recovery Management

  • Baek, Myung-Jin;Lee, Na-Young;Keum, Jung-Hoon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제3권2호
    • /
    • pp.31-39
    • /
    • 2002
  • In this paper, KOMPSAT-2 on-board fault and ground recovery management design is addressesed in terms of hardware and software components which provide failure detection and spacecraft safing for anomalies which threaten spacecraft survival. It also includes ground real time up-commanding operation to recover the system safely. KOMPSAT-2 spacecraft fault and recovery management is designed such that the subsequent system configuration due to system initialization is initiated and controlled by processors. This paper will show that KOMPSAT-2 has a new design feature of CPU SEU mitigation for the possible upsets in the processor CPUs as a part of on-board fault management design. Recovery management of processor switching has two different ways: gang switching and individual switching. This paper will show that the difficulties of using multiple-processor system can be managed by proper design implementation and flight operation.

Co60 Gamma-Ray Effects on the DAC-7512E 12-Bit Serial Digital to Analog Converter for Space Power Applications

  • Shin, Goo-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2065-2069
    • /
    • 2014
  • The DAC-7512E is a 12-bit digital to analog converter that is low power and a single package with internal buffers. The DAC-7512E takes up minimal PCB area for applications of space power electronics design. The spacecraft mass is a crucial point considering spacecraft launch into space. Therefore, we have performed a TID test for the DAC-7512E 12-bit serial input digital to analog converter to reduce the spacecraft mass by using a low-level Gamma-ray irradiator with $Co^{60}$ gamma-ray sources. The irradiation with $Co^{60}$ gamma-rays was carried out at doses from 0 krad to 100 krad to check the error status of the device in terms of current, voltage and bit error status during conversion. The DAC-7512E 12-bit serial digital to analog converter should work properly from 0 krad to 30 krad without any error.

Minimum-Energy Spacecraft Intercept on Non-coplanar Elliptical Orbits Using Genetic Algorithms

  • Oghim, Snyoll;Lee, Chang-Yull;Leeghim, Henzeh
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제18권4호
    • /
    • pp.729-739
    • /
    • 2017
  • The objective of this study was to optimize minimum-energy impulsive spacecraft intercept using genetic algorithms. A mathematical model was established on two-body system based on f and g solution and universal variable to address spacecraft intercept problem for non-coplanar elliptical orbits. This nonlinear problem includes many local optima due to discontinuity and strong nonlinearity. In addition, since it does not provide a closed-form solution, it must be solved using a numerical method. Therefore, the initial guess is that a very sensitive factor is needed to obtain globally optimal values. Genetic algorithms are effective for solving these kinds of optimization problems due to inherent properties of random search algorithms. The main goal of this paper was to find minimum energy solution for orbit transfer problem. The numerical solution using initial values evaluated by the genetic algorithm matched with results of Hohmann transfer. Such optimal solution for unrestricted arbitrary elliptic orbits using universal variables provides flexibility to solve orbit transfer problems.