• 제목/요약/키워드: space-time clustering

검색결과 139건 처리시간 0.028초

2014년 국내 발생 HPAI(고병원성 조류인플루엔자)의 시·공간 군집 분석 (Spatio-Temporal Clustering Analysis of HPAI Outbreaks in South Korea, 2014)

  • 문운경;조성범;배선학
    • 한국지리정보학회지
    • /
    • 제18권3호
    • /
    • pp.89-101
    • /
    • 2015
  • 본 연구는 질병역학의 관점에서 2014년 발생한 HPAI(H5N8)의 시간적 분포와 공간적 분포 그리고 시 공간을 동시에 고려한 분포를 지리정보시스템과 연계하여 분석함으로써 2014년 발생한 HPAI의 전파 및 확산 특징을 알아보고자 한다. 분석 결과 2014년 HPAI는 시간적으로는 모두 3 번의 파동을 형성하였으며, 공간적으로는 경기도 충청북도 충청남도가 인접하는 지역, 전라북도의 곰소만 일대, 전라남도의 영암과 나주 등 영산강과 인접한 지역에서 높은 밀도를 보였다. 시 공간적으로도 공간 밀도가 높은 충청북도 음성지역, 전라북도 부안 고창지역, 나주지역에서 군집이 형성되었다. 다만, 충청북도 음성 진천, 충청남도 천안, 경기도 안성 이천 지역과 전라남도 영암 지역에서는 공간적인 밀도는 높음에도 불구하고 시간적인 범위가 넓음으로써 시 공간 군집이 형성되지 못하였다. 이는 이들 지역의 방역에 문제가 있음을 의미한다. 반면에 곰소만과 인접하고 있는 전라북도 부안 고창 장수 지역은 시 공간 군집이 형성됨으로써, 상대적으로 효과적인 방역이 수행되었다고 볼 수 있다.

공간 연속질의 처리에서 영역 기반의 저장 구조를 이용한 효율적인 디스크 접근 방법 (Efficient Disk Access Method Using Region Storage Structure in Spatial Continuous Query Processing)

  • 정원일
    • 한국산학기술학회논문지
    • /
    • 제12권5호
    • /
    • pp.2383-2389
    • /
    • 2011
  • 유비쿼터스 응용은 실시간으로 입력되는 데이터 스트림과 저장된 공간 데이터를 동시에 처리하는 이중적인 공간 연속 질의 처리 기술이 요구된다. 이러한 공간 연속 질의 처리에서는 대용량 공간 데이터에 대한 디스크 접근 비용을 최소화가 요구되나 기존 공간색인 기법은 논리적 인접성을 공간 데이터의 물리적인 인접성을 보장할 수 없으므로 공간 데이터 탐색에 있어 비용이 증가한다. 또한 데이터 인접성 보장을 위한 공간 순서화 기법의 경우에도 빈번하게 접근되는 질의 공간 영역에 대한 클러스터링을 고려하지 않고 있다. 본 논문에서는 이중적인 공간 연속질의 처리에서 공간 데이터의 효율적인 접근을 위한 영역 기반 저장 구조를 제안한다. 제안 기법에서는 영역을 기반으로 데이터를 인접하게 저장하고 사용자 질의를 영역 기반으로 그룹 처리함으로써 질의 처리 비용을 감소시킬 수 있다.

에지 방향성 히스토그램과 HMM을 이용한 제스처 인식에 관한 연구 (A Study on Gesture Recognition using Edge Orientation Histogram and HMM)

  • 이기준
    • 한국정보통신학회논문지
    • /
    • 제15권12호
    • /
    • pp.2647-2654
    • /
    • 2011
  • 본 논문에서는 에지 방향성 히스토그램과 주성분 분석을 통해서 얻어진 특징 정보를 저차원 제스처 심볼로 구성하여 제스처를 인식하는 알고리즘에 대해 기술한다. 제안된 방법은 기존의 기하학적인 특징 기반 방법이나 외관기반 방법에 비해 많은 계산 량이 요구 되지 않고 최소한의 정보를 사용하고도 높은 인식률을 유지 할 수 있기에 실시간 시스템 구축에 매우 적합하다. 또한 제스처 인식 시 발생하는 잘못된 인식이나 인식 오차를 줄이기 위해 객체 공간상에 투영된 모델 특징 값을 은닉마르코프 모델의 입력 기호로 이용되기 위해서 군집화 알고리즘을 통해 특정한 상태 기호로 구성한다. 이렇게 함으로써 임의의 입력 제스처는 확률 값이 가장 높은 해당 제스처 모델로 인식하게 된다.

PCA와 LDA를 결합한 데이터 전 처리와 다항식 기반 RBFNNs을 이용한 얼굴 인식 알고리즘 설계 (Design of Face Recognition algorithm Using PCA&LDA combined for Data Pre-Processing and Polynomial-based RBF Neural Networks)

  • 오성권;유성훈
    • 전기학회논문지
    • /
    • 제61권5호
    • /
    • pp.744-752
    • /
    • 2012
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.

Proposal of Analysis Method for Biota Survey Data Using Co-occurrence Frequency

  • Yong-Ki Kim;Jeong-Boon Lee;Sung Je Lee;Jong-Hyun Kang
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제5권3호
    • /
    • pp.76-85
    • /
    • 2024
  • The purpose of this study is to propose a new method of analysis focusing on interconnections between species rather than traditional biodiversity analysis, which represents ecosystems in terms of species and individual counts such as species diversity and species richness. This new approach aims to enhance our understanding of ecosystem networks. Utilizing data from the 4th National Natural Environment Survey (2014-2018), the following eight taxonomic groups were targeted for our study: herbaceous plants, woody plants, butterflies, Passeriformes birds, mammals, reptiles & amphibians, freshwater fishes, and benthonic macroinvertebrates. A co-occurrence frequency analysis was conducted using nationwide data collected over five years. As a result, in all eight taxonomic groups, the degree value represented by a linear regression trend line showed a slope of 0.8 and the weighted degree value showed an exponential nonlinear curve trend line with a coefficient of determination (R2) exceeding 0.95. The average value of the clustering coefficient was also around 0.8, reminiscent of well-known social phenomena. Creating a combination set from the species list grouped by temporal information such as survey date and spatial information such as coordinates or grids is an easy approach to discern species distributed regionally and locally. Particularly, grouping by species or taxonomic groups to produce data such as co-occurrence frequency between survey points could allow us to discover spatial similarities based on species present. This analysis could overcome limitations of species data. Since there are no restrictions on time or space, data collected over a short period in a small area and long-term national-scale data can be analyzed through appropriate grouping. The co-occurrence frequency analysis enables us to measure how many species are associated with a single species and the frequency of associations among each species, which will greatly help us understand ecosystems that seem too complex to comprehend. Such connectivity data and graphs generated by the co-occurrence frequency analysis of species are expected to provide a wealth of information and insights not only to researchers, but also to those who observe, manage, and live within ecosystems.

실시간 이미지 획득을 통한 pRBFNNs 기반 얼굴인식 시스템 설계 (A Design on Face Recognition System Based on pRBFNNs by Obtaining Real Time Image)

  • 오성권;석진욱;김기상;김현기
    • 제어로봇시스템학회논문지
    • /
    • 제16권12호
    • /
    • pp.1150-1158
    • /
    • 2010
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problem. First, in preprocessing part, we use a CCD camera to obtain a picture frame in real-time. By using histogram equalization method, we can partially enhance the distorted image influenced by natural as well as artificial illumination. We use an AdaBoost algorithm proposed by Viola and Jones, which is exploited for the detection of facial image area between face and non-facial image area. As the feature extraction algorithm, PCA method is used. In this study, the PCA method, which is a feature extraction algorithm, is used to carry out the dimension reduction of facial image area formed by high-dimensional information. Secondly, we use pRBFNNs to identify the ID by recognizing unique pattern of each person. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as three kinds of polynomials such as constant, linear, and quadratic. Coefficients of connection weight identified with back-propagation using gradient descent method. The output of pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of the Particle Swarm Optimization. The proposed pRBFNNs are applied to real-time face recognition system and then demonstrated from the viewpoint of output performance and recognition rate.

실시간 감시를 위한 학습기반 수행 예측모델의 검증 (Verifying Execution Prediction Model based on Learning Algorithm for Real-time Monitoring)

  • 정윤석;김태완;장천현
    • 정보처리학회논문지A
    • /
    • 제11A권4호
    • /
    • pp.243-250
    • /
    • 2004
  • 실시간 시스템은 시스템이 적시성을 보장하는지 파악하기 위해 실시간 감시기법을 이용한다. 일반적으로 실시간 감시는 실시간 시스템의 현재 동작상태를 파악하는데 중점을 두는 기법이다. 그러나 실시간 시스템의 안정적인 수행을 지원하기 위해서는, 현재 상태를 파악하는 것뿐 아니라, 실시간 시스템 및 시스템상에서 동작하는 실시간 프로세스들의 수행도 예측할 수 있어야 한다. 그러나 기존 예측모델을 실시간 감시기법에 적용하기에는 몇 가지 한계가 있다. 첫째, 예측기능은 실시간 프로세스가 종료한 시점에서 정적인 분석을 통해 수행된다. 둘째, 예측을 위해 사전 기초 통계분석이 필요하다. 셋째, 예측을 위한 이전확률 및 클러스터 정보가 현재 시점을 정확하게 반영하지 못한다. 본 논문에서는 이러한 문제점들을 해결하고 실시간 감시기법에 적용할 수 있는 학습 기반의 수행 예측모델을 제안한다. 이 모델은 학습기법을 통해 불필요한 전처리과정을 없애고, 현시점의 데이터를 이용해, 보다 정확한 실시간 프로세스의 수행 예측이 가능하도록 한다. 또한 이 모델은 실시간 프로세스 수행 시간의 증가율 분석을 통해 다단계 예측을 지원하며, 무엇보다 실시간 프로세스가 실행되는 동안 예측이 가능한 동적 예측을 지원하도록 설계하였다. 실험 결과를 통해 훈련집합의 크기가 10 이상이면 80% 이상의 판단 정확도를 보이며, 다단계 예측의 경우, 훈련집합의 크기 이상의 수행 횟수를 넘으면 다단계 예측의 예측 차는 최소화되는 것으로 나타났다. 본 논문에서 제안한 예측모델은 가장 단순한 학습 알고리즘을 적용했다는 점과, CPU, 메모리, 입출력 데이터를 다루는 다차원 자원공간 모델을 고려하지 못한 한계가 있어 향후에 관련 연구가 요구된다. 본 논문에서 제안하는 학습기반 수행 예측모델은 실시간 감시 및 제어를 필요로 하는 분야 및 응용 분야에 적용할 수 있다.

이동체 데이타베이스를 위한 통합 색인의 설계 및 구현 (Design and Implementation of Unified Index for Moving Objects Databases)

  • 박재관;안경환;정지원;홍봉희
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제33권3호
    • /
    • pp.271-281
    • /
    • 2006
  • 최근 PDA, 휴대폰, 노트북, GPS, RFID와 같은 모바일 장치의 발달과 범용적인 사용으로 위치 기반 서비스(LBS: Location Based Service)에 대한 요구가 점점 증대되고 있다. 위치 기반 서비스의 핵심 기술로는 이동체의 위치를 저장 및 관리하기 위한 이동체 데이타베이스를 들 수 있다. 이러한 데이타베이스는 이동체 정보를 빠르게 검색하기 위해 색인을 필요로 하며, 이 색인은 다수의 이동체에 의해 갱신되는 업데이트를 관리하고 실시간으로 위치를 추적할 수 있어야 한다. 따라서 이동체 데이터베이스를 위한 색인은 실시간 처리를 위해서 메인 메모리에서 동작하는 색인의 구조를 가져야 하며, 다수 이동체의 위치 정보를 관리하기 위해 색인의 일부분을 메모리에서 디스크로 이동하거나 디스크에서 메모리로 로딩하는 기법을 지원해야 한다. 이 논문에서는 이러한 색인의 요구 조건을 충족시키기 위해서 메인 메모리와 디스크를 연동하는 통합색인 기법과 메모리 공간 부족 시에 색인의 일부를 디스크로 이동시키는 이주 정책들을 제시하였다 이주 정책은 디스크 I/O를 줄이기 위해 노드 단위가 아닌 서브트리 단위로 이동하도록 함으로써, 벌크 연산 및 동적 클러스터링의 효과를 얻게 된다. 통합 색인은 이주 정책에 따라 다른 형태로 구성될 수 있으며, 본 논문에서는 Oldest Node 정책과 LRU Buffer 정책을 적용하였다. 또한 통합 색인을 구현하고, 각 이주 정책 별로 실험 평가를 수행하여 성능을 측정하였다

Fuzzy C-means와 CONDENSATION을 이용한 객체 검출 및 추적 시스템 (An Object Detection and Tracking System using Fuzzy C-means and CONDENSATION)

  • 김종호;김상균;황구선;안상호;강병두
    • 한국산업정보학회논문지
    • /
    • 제16권4호
    • /
    • pp.87-98
    • /
    • 2011
  • 동영상에서의 움직이는 객체 검출과 추적은 객체 식별, 상황인식, 지능형 영상 감시 시스템 등 많은 시각 기반 응용 시스템에서 기본적이고 필수적인 전처리 작업이다. 본 논문에서는 배경과 조명이 실시간으로 변화하는 상황에서 움직이는 객체를 빠르고 정확하게 추출하고 움직이는 객체가 다른 물체에 가려지는 경우에도 강인하게 객체를 추적하는 방법을 제안한다. 객체의 효과적인 검출을 위해서 효과적인 고유 공간과 Fuzzy C-means(FCM) 를 결합하여 사용하고 검출된 객체를 강인하게 추적하기 위해 Conditional Density Propagation (CONDENSATION) 알고리즘을 사용한다. 먼저 Principal Component Analysis(PCA)를 이용하여 배경 영상에서 수집한 학습데이터를 주성분(Principal component)으로 선형변환 한다. 주성분들의 고유 특성에 대한 해석을 통하여 객체와 배경에 대하여 판별 능력이 우수한 주성분을 선별하여 고유 배경을 구성한다. 다음으로 이전단계에서 구성된 고유 벡터와 입력 영상을 결합한 연산 결과를 FCM의 입력 값으로 사용해서 객체를 검출한다. 최종적으로 검출된 객체의 좌표를 CONDENSATION의 입력으로 사용해서 객체를 추적한다. 고정된 카메라에서 조명변화와 배경변화에 적용 가능한 시스템을 구현하기 위해 고정된 카메라에서 움직이는 다양한 객체가 포함된 영상을 수집하여 학습데이터로 구성하여 사용하였다. 실험 결과에 따르면 제안하는 방법이 조명변화와 배경변화 그리고 객체의 부분적 움직임에 모두 강인하게 객체를 검출하고 다른 물체나 배경에 의해 객체가 일부 가려지더라도 객체를 추적함을 보여준다.

자기 조직화 맵 기반 유사 검색 시스템 (SOM-Based $R^{*}-Tree$ for Similarity Retrieval)

  • 오창윤;임동주;오군석;배상현
    • 정보처리학회논문지D
    • /
    • 제8D권5호
    • /
    • pp.507-512
    • /
    • 2001
  • 특징 기반 유사성은 멀티미디어 데이터베이스 시스템에서 중요한 연구 쟁점이 되고 있다. 멀티미디어 데이터의 특징이 멀티미디어 객체들을 구별하는데 유용하다지만 특징 벡터의 차원의 수가 증가함에 따라 종래의 다차원 데이터 구조의 성능은 떨어지는 경향이 있다. $R^{*}-Tree$는 R-Tree의 가장 성공적인 병형으로 본 논문에서 고차원 특징 벡터를 위한 새로운 인덱싱 방법으로서 자기 조직화 맵 기반 $R^{*}-Tree$를 제안한다. 자기 조직화 맵 기잔 $R^{*}-Tree$는 고차원 데이터를 좀더 스칼라화해서 탐색할 수 있도록 SOM과 $R^{*}-Tree$를 결합하여 구축한 인덱싱 기법이다. 자기 조직 맵은 고차원 특징 벡터들로부터 2차원 공간으로의 맵핑을 제공한다. 그러나 맵을 위상 특징 맵이라 하고 인접 노느에서 서로 유사한 특징 벡터들을 모아서 입력데이터의 특징 공간들 속에 유사성을 보존하는데 위상 특징 맵의 각 노드는 코드북 벡터를 가지고 있다. 실험적으로 4만개의 이미지로부터 추출된 색깔 특징 벡터들을 이용하여 자기 조직화 맵 기반 $R^{*}-Tree$의 검색시간 비용과 자기 조직화 맵과 $R^{*}-Tree$의 검색 시간 비용을 비교한다. 그 결과 $R^{*}-Tree$를 구축하는데 필요한 노드 수와 검색 시간 비용이 감소됨으로써 자기 조직화 맵 기반 $R^{*}-Tree$는 자기 조직화 맵과 $R^{*}-Tree$보다 훨씬 우수한 성능을 나타냄이 입증되었다.

  • PDF