• Title/Summary/Keyword: space time block coding

Search Result 115, Processing Time 0.022 seconds

차세대 무선통신에서 용량 증대를 위한 Space-Time 부호화 기법

  • 김영주;이황수
    • Information and Communications Magazine
    • /
    • v.18 no.6
    • /
    • pp.119-125
    • /
    • 2001
  • 1990년 초반부터 송신 다이버시티에 대한 연구가 있어 왔다. 1990년 후반부터는 송수신 다이버시티에 대한 실용적인 결과가 부호 이론과 접목이 되면서 나오기 시작한다. 그 중에서 매우 유용한 결과인 Space-Time 부호에 대하여 다룬다. 본 논문에서는 직교 Space-Time block code. Layered Space-Time processing, 그리고 Space-Time trellis Coding의 세 가지로 분류하여 내용을 정리한다.

  • PDF

Adaptive Channel-Matched Extended Alamouti Space-Time Code Exploiting Partial Feedback

  • Badic, Biljana;Rupp, Markus;Weinrichter, Hans
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.443-451
    • /
    • 2004
  • Since the publication of Alamouti's famous space-time block code, various quasi-orthogonal space-time block codes (QSTBC) for multi-input multi-output (MIMO) fading channels for more than two transmit antennas have been proposed. It has been shown that these codes cannot achieve full diversity at full rate. In this paper, we present a simple feedback scheme for rich scattering (flat Rayleigh fading) MIMO channels that improves the coding gain and diversity of a QSTBC for 2$^n$ (n=3, 4, ${\cdots}$) transmit antennas. The relevant channel state information is sent back from the receiver to the transmitter quantized to one or two bits per code block. In this way, signal transmission with an improved coding gain and diversity near to the maximum diversity order is achieved. Such high diversity can be exploited with either a maximum-likelihood receiver or low-complexity zero-forcing receiver.

  • PDF

Decision Feedback Detector for Space-Time Block Codes over Time-Varying Channels

  • Ahn, Kyung-Seung;Baik, Heung-Ki
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.5C
    • /
    • pp.506-513
    • /
    • 2003
  • Most existing space-time coding (STC) schemes have been developed for flat fading channels. To obtain antenna diversity gain, they rely on channel state information (CSI) required at the receiver through channel estimation techniques. This paper proposes a new decision feedback decoding scheme for Alamouti-based space-time block coding (STBC) transmission over time-selective fading channels. In wireless channels, time-selective fading effects arise mainly due to Doppler shift and carrier frequency offset, Modelling the time-selective fading channels as the first-order Gauss-Markov processes, we use recursive algorithms such as Kalman filtering, LMS and RLS algorithms for channel tracking. The proposed scheme consists of the symbol decoding stage and channel tracking algorithms. Computer simulations confirm that the proposed scheme shows the better performance and robustness to time-selectivity.

Performance Improvement of WCDMA Downlink Systems Using Space Time Block Coding (STBC를 이용한 WCDMA 순방향 링크 시스템의 성능개선)

  • 박정숙;박중후
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.4A
    • /
    • pp.423-428
    • /
    • 2004
  • High-data rate and high speed communication techniques are required for wireless mobile communication systems to provide multimedia services. A multiple antenna technology may be used to meet this demand. In this paper, a method for performance improvement of a WCDMA downlink system using space time block coding is proposed in quasi-static Rayleigh fading channels. The proposed receiver uses the cross correlation matrix obtained by each finger corresponding to multi paths. To obtain maximum diversity gain, the inverse of cross correlation matrix and the Hermitian matrix of the channel matrix for each path arc computed, and then applied to received signals. Various simulation results show that the proposed receiver outperforms a conventional receiver in Rayleigh fading channels.

Improved Blind Cyclic Algorithm for Detection of Orthogonal Space-Time Block Codes

  • Le, Minh-Tuan;Pham, Van-Su;Mai, Linh;Yoon, Gi-Wan
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.136-140
    • /
    • 2006
  • In this paper, we consider the detection of orthogonal space-time block codes (OSTBCs) without channel state information (CSI) at the receiver. Based on the conventional blind cyclic decoder, we propose an enhanced blind cyclic decoder which has higher system performance than the conventional one. Furthermore, the proposed decoder offers low complexity since it does not require the computation of singular value decomposition.

Performance Analysis of MIMO-OFDM System Applying AMC and SFC Schemes (AMC와 SFC기법을 적용한 MIMO-OFDM 시스템의 성능 분석)

  • Lee, Yun-Ho;Kim, Hyung-Jung;Jo, G.D.;Kim, Kyung-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.4
    • /
    • pp.55-62
    • /
    • 2008
  • Adaptive modulation and Coding(AMC) scheme is promising technique to support the demands for high data rates and wideband proposed for 4G mobile communication system standards. In this paper, adaptive modulation and coding(AMC) based on OFDM system is analyzed through simulation for single user case and compared with SISO-OFDM and SFBC(Space frequency block coding)-OFDM. The performance analysis in terms of capacity for downlink system environments with different values of constellation size under multipath fading channel is done. The adaptive modulation and coding technique is based on perfect estimation channel. It has been observed that SFBC(Space-frequency block coding)-OFDM system gives better performance in terms of capacity.

Performance Improvement of OFDM System Using Transmit Diversity with Space-Time Block Coding

  • Yorwittaya, N.;Chamchoy, M.;Supanakoon, P.;Tangtisanon, P.
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1066-1069
    • /
    • 2002
  • Orthogonal frequency division multiplexing (OFDM) is a special technique for communication systems which can support the high data rate transmission with sufficient robustness to fading channels. Tansmitter diversity with space-time block coding (STBC) is an attractive transmission scheme to improve the performance of systems. In this paper, we compare the performance of space-time block coded OFDM systems with that of conventional OFDM systems over fast fading channels. The block-interleaved (BI) STBC and frequency hopping (FH) OFDM are proposed in the study to provide the maximum achievable diversity gains. As the simulation results, the STBC OFDM, Bl-STBC OFDM and Bl-STBC FH-OFDM provide the much improved performance over the conventional OFDM. And the Bl-STBC FH-OFDM also provide the better performance than the STBC OFDM and Bl-STBC OFDM, especially, in the case of the two transmit antennas are employed while BI-STBC FH-OFDM can maintain the same data rate of 12 Mbps.

  • PDF

A Weighted Block Adaptive Estimation for STBC Single-Carrier System in Frequency-Selective Time-Varying Channels (다중 경로 시변 채널 환경에서 시공간 블록 부호 단일 반송파 시스템을 위한 가중치 블록 적응형 채널 추정 알고리즘)

  • Baek, Jong-Seob;Kwon, Hyuk-Jae;Seo, Jong-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.3C
    • /
    • pp.338-347
    • /
    • 2007
  • In this paper, a weighted block adaptive channel estimation (WBA-CE) for a space-time block-coded (STBC) single-carrier transmission with a cyclic-prefix is proposed. In operation of the WBA-CE, a STBC matrix-wise block for filter input symbols is first formulated. Applying a weighted a posteriori error vector-based least-square (LS) criterion for this block, the coefficient correction terms of the WBA-CE are then computed. An approximate steady-state excess mean-square error (EMSE) of the WBA-CE for the stationary optimal coefficient is also analyzed. Simulation results show in a time-varying typical urban (TU) channel that the proposed channel estimator provides better bit-error-rate (BER) performances than conventional algorithms such as the NLMS and RLS channel estimators.

Performance of Convolutionally-Coded MIMO Systems with Antenna Selection

  • Hamouda Walaa;Ghrayeb Ali
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.307-312
    • /
    • 2005
  • In this work, we study the performance of a serial concatenated scheme comprising a convolutional code (CC) and an orthogonal space-time block code (STBC) separated by an inter-leaver. Specifically, we derive performance bounds for this concatenated scheme, clearly quantify the impact of using a CC in conjunction with a STBC, and compare that to using a STBC code only. Furthermore, we examine the impact of performing antenna selection at the receiver on the diversity order and coding gain of the system. In performing antenna selection, we adopt a selection criterion that is based on maximizing the instantaneous signal-to­noise ratio (SNR) at the receiver. That is, we select a subset of the available receive antennas that maximizes the received SNR. Two channel models are considered in this study: Fast fading and quasi-static fading. For both cases, our analyses show that substantial coding gains can be achieved, which is confirmed through Monte-Carlo simulations. We demonstrate that the spatial diversity is maintained for all cases, whereas the coding gain deteriorates by no more than $10\;log_{10}$ (M / L) dB, all relative to the full complexity multiple-input multiple-output (MIMO) system.

New Design for Linear Complex Precoding over ABBA Quasi-Orthogonal Space-Time Block Codes

  • Ran, Rong;Yang, Jang-Hoon;An, Chan-Ho;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12C
    • /
    • pp.1062-1067
    • /
    • 2008
  • ABBA codes, a class of quasi-orthognal space-time block codes (QoSTBC) proposed by Tirkkonen and others, allow full rate and a fast maximum likelihood (ML) decoding, but do not have full diversity. In this paper, a linear complex precoder is proposed for ABBA codes to achieve full rate and full diversity. Moreover, the same diversity produce as that of orthogonal space-time block code with linear complex precoder (OSTBC-LCP) is achieved. Meanwhile, the size of the linear complex precoder can be reduced by half without affecting performance, which means the same complexity of decoding as that of the conventional ABBA code is guaranteed.