• Title/Summary/Keyword: space launch vehicle

Search Result 475, Processing Time 0.028 seconds

Proposal of Pipe Pressure Mode Analysis Method in Propulsion System for Predicting the Pogo of Space Launch Vehicle (우주 발사체의 포고현상 예측을 위한 공급/추진계의 파이프 압력모드 해석 기법 제안)

  • Lee, SangGu;Lee, SiHun;Shin, SangJoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.714-717
    • /
    • 2017
  • Among the factors considered in the design stage of a space launch vehicle using liquid propellant, research has been focused out on the pogo phenomenon, longitudinal dynamic instability. The pogo phenomenon refers to the instability that the longitudinal vibration of the launch vehicle structure causes a change in the pressure and flow rate of the fluids in propulsion system, and this change re-excites the fuselage structure. This mechanism constitutes a closed system to gradually increase the vibration of the launch vehicle. This paper specifically focuses on the dynamic analysis of pressure and flow changes in the propulsion system. Based on the example study of the space shuttle, the acoustic modal analysis of the propulsion system is performed to predict the modes of the supply line causing instability of the fuselage.

  • PDF

Application Method of Burn-In Test to the Components for Space Launch Vehicle (우주 발사체용 부품의 번인시험 적용방안)

  • Park, Jong-Chan;Chun, Young-Doo;Chung, Eui-Seung;Park, Jung-Joo
    • Aerospace Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.165-172
    • /
    • 2007
  • A space launch vehicle is a very complex system composed of many kinds of components. It is necessary for even a small piece of components in it to be free of defects, malfunctions and to operate normally for the sake of the mission success. For these reasous, a variety of tests are carried out. Burn-in test is to detect latent material and workmanship defects which occurs early in the components use. Developed countries for the space technology have considered the burn-in test for flight vehicles in the standard test documents and performed it. Referred to the documents, application methods of burn-in test will be considered for the components of domestic space launch vehicles such as KSLV-I in this document.

  • PDF

Technology and Development Trends of Small Launch Vehicles (소형발사체 개발 및 최신 기술 동향)

  • Choi, Junsub;Huh, Hwanil;Ki, Wonkeun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.5
    • /
    • pp.91-102
    • /
    • 2020
  • Recently, a new space era has evolved in which commercial companies' led space development has begun. In this era, commercial companies actively participate in space development as the size of the small satellite market and small launch vehicle market is expanding. Through space development, developed countries are making efforts to reduce development, production, and operation costs to secure the competitiveness of small launch vehicles. In this study, the development trend of small launch vehicles and required technologies for space development were analyzed and summarized. Thus, research and development is urgently needed so that spin-on technologies, such as electric pumps and additive manufacturing, can be utilized for space development.

Technical Safety Management for KSLV-I (KSLV-I의 기술적 안전 관리)

  • Cho, Sang-Yeon;Kim, Yong-Wook;Lee, Jeong-Ho;Shin, Myoung-Ho;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.682-685
    • /
    • 2010
  • KSLV-I is the 1st Korean satellite launch vehicle, which was launched at Naro space center by Korea Aerospace Research Institute (KARI) in AUG. 2009, and JUN. 2010. Although the missions of 1st and 2nd launch of KSLV-I were not successful, safety of launch vehicle was accomplished through the cooperation with the Russian partner Khrunichev Space Research and Production Center (KhSC). Both parties co-developed the technical safety management program to ensure launch safety. In this paper, the analysis and contents of safety program are illustrated.

  • PDF

위성발사를 위한 원격측정 지상국시스템 설계에 관한 연구

  • Lee, Sung-Hee;Oh, Chang-Yul;Lee, Hyo-Keun
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.167-178
    • /
    • 2003
  • The design on the Telemetry Ground System for launch of KSLV(Korea Space Launch Vehicle) in the korean Space center has been conducted in this study. For the optimized system design, first of all, the system deployment plan reflecting the topographic and geographic environments of the space center and launch vehicle characteristics has been developed. The RF link budget analysis for the maximum tracking range, requirement for receiving subsystem including antenna subsystem, requirement for data processing subsystem are also analyzed based on the On-Board Telemetry characteristics and launch vehicle parameters. Based on those analysis, telemetry ground system containing tracking/receiving subsystem, recording subsystem and data processing subsystem, timing subsystem, calibration subsystem and monitoring and control subsystem are designed. Futhermore, the analysis for the maximum permissible data latency and communication protocol between each telemetry station and control center are conducted and the entire system is designed so that the major telemetry parameters selected to the best quality are provided in real time to the control center(RCC, RSC) for the launch mission operation.

  • PDF

Development of a GPS Receiver System for Satellite Launch Vehicles (위성발사체용 GPS 수신기 시스템의 개발)

  • Kwon, Byung-Moon;Moon, Ji-Hyeon;Shin, Yong-Sul;Choi, Hyung-Don;Cho, Gwang-Rae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.9
    • /
    • pp.929-937
    • /
    • 2008
  • A GPS receiver system utilized on satellite launch vehicles should operate normally under harsh environments as well as high-dynamic conditions. The GPS receiver system to use for range safety of KSLV(Korea Space Launch Vehicle)-I that is the first satellite launch vehicle developed by KARI(Korea Aerospace Research Institute) has been confirmed to survive under the environment of the launcher through extensive terrestrial tests including humidity, high and low temperatures, vacuum, sinusoidal and random vibrations, shocks, acceleration, EMI/EMC(Electromagnetic Interference/ Electromagnetic Compatibility), etc. Several performance tests have been also carried out in order to evaluate tracking capability and accuracy of the GPS receiver under high-dynamic conditions using a GPS signal simulator. Some lessons-learned during development of the GPS receiver system and its special characteristics compared with COTS(Commercial-Off-The-Shelf) GPS receiver systems are described in this paper.

Development of a solar flux model for thermal load prediction of a launch vehicle (발사체 열부하 예측을 위한 태양열 모델 개발)

  • Kim, Seong-Lyong;Kim, In-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.9
    • /
    • pp.826-835
    • /
    • 2007
  • Solar heat flux data is needed for thermal load prediction of launch vehicle. In order to predict the solar flux, several solar flux models have been compared and a new model is developed. Most of the models can predict well the direct solar flux, but show some errors in the scattered solar flux. The newly developed model considered isotropic and anisotropic scattered solar fluxes, and the predicted solar flux agreed well with the measured. Because the present model can be used at any longitude, latitude, day and altitude, the model would be an useful tool to predict the thermal load of the launch vehicle and the vehicles which have to consider the solar heat.

Water Rockets for Engineering Education of Launch Vehicles, Part I: Principles and System Composition (발사체 공학교육을 위한 물로켓, Part I: 원리와 시스템 구성)

  • Kim, Jae-Yeul;Hwang, Won-Sub;Choi, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.7
    • /
    • pp.525-534
    • /
    • 2019
  • Water rocket is a pressurized liquid propellant rocket that shares the same basic principles of space launch vehicles. Water rockets can be used as an engineering educational material for the liquid rocket principles and the launch vehicle systems, far beyond the scope of K-12 level science education. In this paper, the principles and theories of water rocket propulsion and flight dynamics was investigated at the level of undergraduate rocket engineering classes. Also, the system level design and operation of water rocket is summarized by including the components of launch vehicle, launch pad, payload and recovery as well as altitude measurement methods.

A Study on Establishing the Requirements Verification Matrix (RVM) for the Space Launch Vehicle (우주발사체 요구조건 검증 매트릭스(RVM) 수립 연구)

  • Jang, Junyouk;Cho, Dong Hyun;Yoo, Il Sang
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.14 no.2
    • /
    • pp.16-23
    • /
    • 2018
  • The intended system's function and performance can be assured through implementing the development process, the verification compliance against corresponding requirements, in accordance with the fundamental principle from the Systems Engineering. For the effective verification implementation, related core metadata should be selected and managed throughout the development life cycle. And these have to be included in the configuration document such as specification so that taking them as development baselines each phases if necessary. In this paper, associated case study results are introduced to establish the Requirements Verification Matrix (RVM) for the verification management on the space launch vehicle development program.

Development Trend of Perspective Methane Rocket Engines for Space Development (우주개발을 위한 차세대 메탄엔진 개발 동향)

  • Jeong, Gijeong;Bae, Jinhyun;Jeong, Seokgyu;Sohn, Chae Hoon;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.7
    • /
    • pp.558-565
    • /
    • 2017
  • Recently, there has been a tendency to lead the private sector in the launch vehicle market, and as the market has become saturated, efforts are being made to reduce the launch cost. Advanced countries in space development have promoted manned long-range space exploration plans. As oxygen/methane is more efficient, lower cost, and eco-friendly than typical propellants, and can be produced locally on an alien planet, it is the most suitable next-generation propellant to meet this trend. Now methane engine development is accelerating due to changes in international conditions and corporate environment. It is also expected to develop a methane engine in order to survive in this global trend and to keep up with the launch vehicle market in the future.