• Title/Summary/Keyword: soybean(Glycine max(L.) Merr.)

Search Result 156, Processing Time 0.036 seconds

Plastid Transformation of Soybean Suspension Cultures

  • Zhang, Xing-Hai;Archie R.Portis. Jr.;Jack M.Widholm
    • Journal of Plant Biotechnology
    • /
    • v.3 no.1
    • /
    • pp.39-44
    • /
    • 2001
  • Plastid transformation was attempted with soybean [Glycine max (L.) Merr.] leaves and photoautotrophic and embryogenic cultures by particle bombardment using the transforming vector pZVII that carries the coding sequences for both subunits of Chlamydomonas reinhardtii Rubisco and a spectinomycin resistance gene (aadA). Spectinomycin resistant calli were selected from the bombarded leaves but the transgene was not present, indicating that the resistance was due to mutations. The Chlamydomonas rbcL and rbcS genes were shown to be site-specifically integrated into the plastid genome of the embryogenic cells with a very low transformation efficiency. None of the transformed embryogenic lines survived the plant regeneration process so no whole plants were recovered. This result does indicate that it should be possible to insert genes into the plastid genome of the important crop soybean if the overall methods are improved.

  • PDF

Determination of Protein and Oil Contents in Soybean Seed by Near Infrared Reflectance Spectroscopy

  • Choung, Myoung-Gun;Baek, In-Youl;Kang, Sung-Taeg;Han, Won-Young;Shin, Doo-Chull;Moon, Huhn-Pal;Kang, Kwang-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.2
    • /
    • pp.106-111
    • /
    • 2001
  • The applicability of near infrared reflectance spectroscopy(NIRS) was tested to determine the protein and oil contents in ground soybean [Glycine max (L.) Merr.] seeds. A total of 189 soybean calibration samples and 103 validation samples were used for NIRS equation development and validation, respectively. In the NIRS equation of protein, the most accurate equation was obtained at 2, 8, 6, 1(2nd derivative, 8 nm gap, 6 points smoothing and 1 point second smoothing) math treatment condition with SNV-D (Standard Normal Variate and Detrend) scatter correction method and entire spectrum by using MPLS (Modified Partial Least Squares) regression. In the case of oil, the best equation was obtained at 1, 4, 4, 1 condition with SNV-D scatter correction method and near infrared (1100-2500nm) region by using MPLS regression. Validation of these NIRS equations showed very low bias (protein:-0.016%, oil : -0.011 %) and standard error of prediction (SEP, protein: 0.437%, oil: 0.377%) and very high coefficient of determination ($R^2$, protein: 0.985, oil : 0.965). Therefore, these NIRS equation seems reliable for determining the protein and oil content, and NIRS method could be used as a mass screening method of soybean seed.

  • PDF

QTL Mapping for Major Agronomic Traits across Two Years in Soybean(Glycine max L. Merr.)

  • Li, Wenxin;Zheng, Da-Hao;Van, Kyu-Jung;Lee, Suk-Ha
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.171-176
    • /
    • 2008
  • The agronomic traits, such as days to flowering and maturity, plant height, 100-seed weight and seed filling period, are quantitatively inherited and important characters in soybean(Glycine max L. Merr.). A total of 126 $F_5$ recombinant inbred lines(RILs) developed from the cross of PI 171451$\times$Hwaeomputkong were used to identify quantitative trait loci(QTLs) for days to flowering(FD), days to maturity(MD), plant height(PH), 100-seed weight(SW), number of branches(NB) and seed filling period(FP). A total of 136 simple sequence repeat(SSR) markers segregated in a RIL population were distributed over 20 linkage groups(LGs), covering 1073.9 cM of the soybean genome with the average distance between adjacent markers of 7.9 cM. Five independent QTLs were identified for FD, three for MD, two for PH, three for SW, one for NB and one for FP. Of these, three QTLs were related to more than two traits of FD, MD, PH, NB and FP and mapped near the same positions on LGs H and O. Thus, these traits could be correlated with biologically controlled major QTLs in this soybean RIL population.

  • PDF

Analysis of Secondary Metabolites in Various Cultivars of Soybean (Glycine max (L.) Merr.) (다양한 콩 자원들의 이차대사물질 함량 분석)

  • Seo, Mi-Suk;Park, Gyu Tae;Kim, Hyun Young;Lee, Sang-Beom;Kim, Yu-na;Park, Soo-Kwon;Kim, Dool-Yi;Mun, Jung Kyung
    • Korean Journal of Plant Resources
    • /
    • v.35 no.5
    • /
    • pp.586-593
    • /
    • 2022
  • Soybean (Glycine max (L.) Merr.) is a high-protein oilseed crop, cultivated worldwide. Soybean seeds are abundant in various secondary metabolites with physiologically active. Mature seeds of 25 soybean cultivars with various morphological and physiological characteristics analyzed for secondary metabolites, such as carotenoid, isoflavone, and soyasaponin. These secondary metabolites showed various content by genotype in 25 cultivars. Total carotenoid content ranged from 1.23 to 33.78 mg/g and three cultivars, such as IT177645, PI90763 and IT234975 with black seed coat showed high levels of total carotenoid. Total isoflavones content ranged from 20.28 to 276.35 mg/100g and were detected high levels in Savoy, PI90763 and KLG16001. In addition, total soyasaponins content ranged from 33.12 to 246 mg/100g and were detected high levels in PI90763, PI86490 and IT234975. The PI90763 was showed abundant content in all of the carotenoid, isoflavones and soyasaponins. These results could be valuable information for the development of new soybean cultivars and regulation of secondary metabolites biosynthesis in soybean.

Object Detection Based on Deep Learning Model for Two Stage Tracking with Pest Behavior Patterns in Soybean (Glycine max (L.) Merr.)

  • Yu-Hyeon Park;Junyong Song;Sang-Gyu Kim ;Tae-Hwan Jun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.89-89
    • /
    • 2022
  • Soybean (Glycine max (L.) Merr.) is a representative food resource. To preserve the integrity of soybean, it is necessary to protect soybean yield and seed quality from threats of various pests and diseases. Riptortus pedestris is a well-known insect pest that causes the greatest loss of soybean yield in South Korea. This pest not only directly reduces yields but also causes disorders and diseases in plant growth. Unfortunately, no resistant soybean resources have been reported. Therefore, it is necessary to identify the distribution and movement of Riptortus pedestris at an early stage to reduce the damage caused by insect pests. Conventionally, the human eye has performed the diagnosis of agronomic traits related to pest outbreaks. However, due to human vision's subjectivity and impermanence, it is time-consuming, requires the assistance of specialists, and is labor-intensive. Therefore, the responses and behavior patterns of Riptortus pedestris to the scent of mixture R were visualized with a 3D model through the perspective of artificial intelligence. The movement patterns of Riptortus pedestris was analyzed by using time-series image data. In addition, classification was performed through visual analysis based on a deep learning model. In the object tracking, implemented using the YOLO series model, the path of the movement of pests shows a negative reaction to a mixture Rina video scene. As a result of 3D modeling using the x, y, and z-axis of the tracked objects, 80% of the subjects showed behavioral patterns consistent with the treatment of mixture R. In addition, these studies are being conducted in the soybean field and it will be possible to preserve the yield of soybeans through the application of a pest control platform to the early stage of soybeans.

  • PDF

Variation of Anthocyanin and Protein Contents in Glycine max L. (Merr) (Soybean) Germplasms from Korea

  • Choi, Yu Mi;Lee, Sukyeung;Hyun, Do-Yoon;Ko, Ho-Cheol;Rho, Nayoung;Hur, On-Sook;Yoon, Hyemyeong;Lee, Myung-Chul;Oh, Sejong;Shin, Myoung-Jae;DESTA, Kebede Taye
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2019.10a
    • /
    • pp.13-13
    • /
    • 2019
  • Soybean (Glycine max L. (Merr) is commonly consumed and found in major foods including soymilk, soy sauce, tofu, and soy sprout in Korea and east Asia. In addition, it is common to cook the whole seeds with rice. Soybean is known to have ranges of health benefits including antiaging, anticancer, neuroprotective and antidiabetic taken either as supplement or dietary food. Anthocyanins and flavonoids in G. max are found to be the main contributors to such wide arrays of health benefits. Due to increasing economic values of soybean, development of specialty soybean cultivars is becoming an area of interest worldwide. In this study, 746 black soybean accessions from National Agrobiodiversity Center were characterized as part of an attempt to identify important germplasms of G. max. Seed coats of each accession were analyzed for their total anthocyanin, cyanidin 3-O-Glucoside (C-3-O-G), delphinidin 3-O-glucoside (D-3-O-G), petunidin-3-O-glucoside (Pt-3-O-G), and their whole seeds for crude protein contents. HPLC was used to determine and quantify the anthocyanin compositions while crude protein was determined using Kjeldahl method by Kjeltec auto-analyzer (Kjeltec 8400, Foss, Sweden). Accessions were grouped according to their anthocyanins and protein contents; the mean content of which were correlated to agronomic traits including maturity date, one hundred seed weight, cotyledon color and seed lust color. The results indicated that the total anthocyanin content (TAC) ranged from 273.77 to 6250.52 mg/100 g, with mean value of 1853.03 mg/100 g while the crude protein content (CPC) being between 33.43 and 47.51%, with mean value of 40.81%. The highest number of accessions (45.97%) showed TAC between 1000~1900 mg/100 g while 30.96% of accessions showed CPC between 41~43%. Among the 746 accessions considered, 11 (IT142935, 175818, 175855, 177191, 177209, 177211, 177214, 177216, 177218, 177220, 177274) of them showed TAC above 4000 mg/100 g. C-3-O-G was found to be the major contributor to TAC showing strong correlation. Accessions with green cotyledon color showed high mean TAC compared to those having yellow cotyledon color, and accessions with dull seed lust color showed high mean TAC than those having shiny seed lust color. One hundred seeds weight and maturity date showed positive correlation with all anthocyanin contents, except for Pt-3-O-G in the latter case. The overall result of the present study could be used as background for developing new black soybean cultivars and breeds with high anthocyanin and protein contents. The result depicted that many of the accessions could be used as potential parental lines.

  • PDF

Isolation and Culture of Protoplasts from Hypocotyl-derived Callus of Soybean (Glycine max) (대두 (Glycine max) 부배유 유래 칼루스의 원형질체 분리 및 배양)

  • 이광웅
    • Journal of Plant Biology
    • /
    • v.28 no.3
    • /
    • pp.233-241
    • /
    • 1985
  • The isolation and culture of protoplasts from hypocotyl-derived calluses of Glycine max (L.) Merr. cv. Jangyeop were obtained by digestion for 6 hrs in an enzyme solution containing 3.5% cellulase, 1.5% macerozyme, 10% sorbitol and 0.1% CaCl2.2H2O at pH 5.8. Newly formed cell wall of protoplasts cultured in MS agar medium containing 10 $\mu$M $\alpha$-naphthaleneacetic acid (NAA) and 32 $\mu$M N6-benzylaminopurine (BAP) could be observed after 24 hrs culture. The first cell division of the protoplasts was observed after 3 days of culture; cell clusters after 2 weeks of culture. When transferred to solid media, the protoplasts formed cell clusters gave rise to proliferating calluses.

  • PDF

A Study on the Development of the Seeder for Soybean and Corn (콩.옥수수 육묘용 파종기 개발에 관한 연구)

  • Kim, Dong-Eok;Kim, Hyun-Hwan;Kim, Jong-Goo;Lee, Gong-In;Kim, Sung-Ki;Chang, Yu-Seob
    • Journal of Biosystems Engineering
    • /
    • v.35 no.5
    • /
    • pp.330-335
    • /
    • 2010
  • Soybean (Glycine max Merr.) and corn (Zea mays L.) transplanting has increased because soybean and corn crops cultivated by the direct seeding method were often damaged by wild birds. The purpose of this study is to develop a seeder to sow soybean (Glycine max Merr.) and corn (Zea mays L.) in a plug tray. In order to find out design factors for a metering device of the seeder, metering characteristics on metering hole size and roller speed were experimentally investigated. Soybean (cv. 'Daewon') and corn (cv. 'Mibaekchal') were used as a materials for testing the seeder in this experiment. The metering hole size of roller suitable for Daewonkong and Mibaekchal was determined. Daewonkong was suitable for hole diameter of 10 mm and hole depth of 5.5 mm, and Mibaekcal was suitable for hole diameter of 9 mm and hole depth of 5.5 mm. At a brush length of 4 mm, one grain seeding rates of Daewonkong and Mibaekchal was 99% and 93% respectively. By inducing Mibaekchal to the hole by swing, one grain seeding rate of that increased from 91.9% to 97.7%. When roller speed is 4 m per minut, seeding efficiency of prototype was 110 sheets per hour.

Non-destructive Method for Selection of Soybean Lines Contained High Protein and Oil by Near Infrared Reflectance Spectroscopy

  • Choung, Myoung-Gun;Baek, In-Youl;Kang, Sung-Taeg;Han, Won-Young;Shin, Doo-Chull;Moon, Huhn-Pal;Kang, Kwang-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.5
    • /
    • pp.401-406
    • /
    • 2001
  • The applicability of non-destructive near infrared reflectance spectroscopic (NIRS) method was tested to determine the protein and oil contents of intact soybean [Glycine max (L.) Merr.] seeds. A total of 198 soybean calibration samples and 101 validation samples were used for NIRS equation development and validation, respectively. In the developed non-destructive NIRS equation for analysis of protein and oil contents, the most accurate equation was obtained at 2, 8, 6, 1(2nd derivative, 8 nm gap, 6 points smoothing, and 1 point second smoothing) and 2, 1, 20, 10 math treatment conditions with Standard Normal Variate and Detrend (SNVD) scatter correction method and entire spectrum (400-2500 nm) by using Modified Partial Least Squares (MPLS) regression, respectively. Validation of these non-destructive NIRS equations showed very low bias (protein: 0.060%, oil: -0.017%) and standard error of prediction (SEP, protein: 0.568 %, oil : 0.451 %) as well as high coefficient of determination ($R^2$, protein: 0.927, oil: 0.906). Therefore, these non-destructive NIRS equations can be applicable and reliable for determination of protein and oil content of intact soybean seeds, and non-destructive NIRS method could be used as a mass screening technique for selection of high protein and oil soybean in breeding programs.

  • PDF