DOI QR코드

DOI QR Code

Analysis of Secondary Metabolites in Various Cultivars of Soybean (Glycine max (L.) Merr.)

다양한 콩 자원들의 이차대사물질 함량 분석

  • Seo, Mi-Suk (Crop Foundation Research Division, National Institute of Crop Science) ;
  • Park, Gyu Tae (Crop Foundation Research Division, National Institute of Crop Science) ;
  • Kim, Hyun Young (Crop Foundation Research Division, National Institute of Crop Science) ;
  • Lee, Sang-Beom (Crop Foundation Research Division, National Institute of Crop Science) ;
  • Kim, Yu-na (Crop Foundation Research Division, National Institute of Crop Science) ;
  • Park, Soo-Kwon (Crop Foundation Research Division, National Institute of Crop Science) ;
  • Kim, Dool-Yi (Crop Foundation Research Division, National Institute of Crop Science) ;
  • Mun, Jung Kyung (Crop Foundation Research Division, National Institute of Crop Science)
  • 서미숙 (국립식량과학원 작물기초기반과) ;
  • 박규태 (국립식량과학원 작물기초기반과) ;
  • 김현영 (국립식량과학원 작물기초기반과) ;
  • 이상범 (국립식량과학원 작물기초기반과) ;
  • 김유나 (국립식량과학원 작물기초기반과) ;
  • 박수권 (국립식량과학원 작물기초기반과) ;
  • 김둘이 (국립식량과학원 작물기초기반과) ;
  • 문중경 (국립식량과학원 작물기초기반과)
  • Received : 2022.09.01
  • Accepted : 2022.09.13
  • Published : 2022.10.01

Abstract

Soybean (Glycine max (L.) Merr.) is a high-protein oilseed crop, cultivated worldwide. Soybean seeds are abundant in various secondary metabolites with physiologically active. Mature seeds of 25 soybean cultivars with various morphological and physiological characteristics analyzed for secondary metabolites, such as carotenoid, isoflavone, and soyasaponin. These secondary metabolites showed various content by genotype in 25 cultivars. Total carotenoid content ranged from 1.23 to 33.78 mg/g and three cultivars, such as IT177645, PI90763 and IT234975 with black seed coat showed high levels of total carotenoid. Total isoflavones content ranged from 20.28 to 276.35 mg/100g and were detected high levels in Savoy, PI90763 and KLG16001. In addition, total soyasaponins content ranged from 33.12 to 246 mg/100g and were detected high levels in PI90763, PI86490 and IT234975. The PI90763 was showed abundant content in all of the carotenoid, isoflavones and soyasaponins. These results could be valuable information for the development of new soybean cultivars and regulation of secondary metabolites biosynthesis in soybean.

콩(Glycine max (L.) Merr.)은 전세계적으로 널리 재배되고 있는 고단백 유지 작물로서 다양한 생리활성을 가지는 이차대사산물을 함유하고 있다. 본 연구에서는 콩 25개 자원들을 대상으로 카로티노이드, 이소플라본, 그리고 소야사포닌 함량을 분석하였다. 총 카로티노이드 함량을 분석한 결과, 1.23~33.78 ㎍/g의 분포를 보였고, IT177645, PI90763, 그리고 IT234975과 같은 검은 종피색을 가진 자원들에서 가장 높은 카로티노이드 함량이 관찰되었다. 이소플라본 함량은 Savoy, PI90763, KLG16001에서 높게 확인되었고, 소야사포닌은 PI90763, PI86490, 그리고 IT234975에서 가장 높은 함량을 보였다. PI90763은 카로티노이드, 이소플라본, 그리고 소야사포닌 3종 모두를 고농도로 함유한 자원으로 확인되었다. 본 실험의 결과, 다양한 이차대사산물의 고함량 자원들은 고기능성 품종 개발을 위한 육종 소재 및 이차대사산물의 생합성 관련 연구를 위한 기초자료로써 활용이 가능할 것이다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 국립식량과학원 어젠다 사업(과제번호: PJ014954022022)의 지원에 의하여 수행되었습니다. 연구수행을 위하여 실험적 지원을 해주신 국립식량과학원 작물기초기반과 강현애, 송지연 선생님께 감사드립니다.

References

  1. Choi, Y.M., H. Yoon, S. Lee, H.C. Ko, M.J. Shin, M.C. Lee, S. Oh and K.T. Desta. 2020. Comparison of isoflavone composition and content in seeds of soybean (Glycine max (L.) Merrill) germplasm with different seed coat colors and days to maturity. Korean J. Plant Res. 33(6):558-577.
  2. Coward, L., N.C. Barnes, K.D.R. Setchell and B. Barness. 1993. Genistein, daidzein, and their ß-glucoside conjugates: antitumor isoflavones in soybean foods from American and Asian diets. J. Agric. Food Chem. 41:1961-1967. https://doi.org/10.1021/jf00035a027
  3. Gebregziabher, B.S., S. Zhang, S. Ghosh, A.S. Shaibu, M. Azam, A.M. Abdelghany, J. Qi, K.G. Agyenim-Boateng, H.T.P. Htway, Y. Feng, C. Ma, Y. Le, J. Le, B. Li, L. Qiu and J. Sun. 2022. Origin, maturity group and seed coat color influence carotenoid and chlorophyll concentrations in soybean seeds. Plants 11:848. https://doi.org/10.3390/plants11070848
  4. Gutierrez-Gonzalez, J.J., X. Wu, J. Zhang, J.D. Lee, M. Ellersieck and J.G. Shannon. 2009. Genetic control of soybean seed isoflavone content: importance of statistical model and epistasis in complex traits. Theor. Appl. Genet. 119:1069-1083. https://doi.org/10.1007/s00122-009-1109-z
  5. Hoeck, J.A., W.R. Fehr, P.A. Murphy and G.A. Welke. 2000. Influence of genotype and environment on isoflavone contents of soybean. Crop Sci. 40:48-51. https://doi.org/10.2135/cropsci2000.40148x
  6. Huang, S., J. Yu, Y. Li, J. Wang, X. Wang, H. Qi, M. Xu, H. Qin, Z. Yin, H. Mei, H. Chang, H. Gao, S. Liu, Z. Zhang, S. Zhang, R. Zhu, C. Liu, X. Wu, H. Jiang, Z. Hu, D. Xin, Q. Chen and Z. Qi. 2019. Identification of soybean genes related to soybean seed protein content based on quantitative trait loci collinearity analysis. J. Agric. Food Chem. 67(1):258-274. https://doi.org/10.1021/acs.jafc.8b04602
  7. Hwang, C.E., S.C. Kim, J.H. Lee, D.H. Lee and K.M. Choi. 2019. Comparison of primary and secondary metabolite compositions and antioxidant effects of specific soybean cultivars. Korean J. Food Preserv. 26(5)555-565. https://doi.org/10.11002/kjfp.2019.26.5.555
  8. Jeong, N., K.S. Kim, S. Jeong, J.Y. Kim, S.K. Park, J.S. Lee, S.C. Jeong, S.T. Kang, B.K. Ha, D.Y. Kim, N. Kim, J.K. Moon and M.S. Choi. 2019. Korean soybean core collection: genotypic and phenotypic diversity population structure and genome-wide association study. PLoS ONE 14(10): e0224074. https://doi.org/10.1371/journal.pone.0224074
  9. Kang, E.Y., S.H. Kim, S.L. Kim, S.H. Seo, E.H. Kim, H.K. Song, S.K. Ahn and I.M. Chung. 2010. Comparison of soyasaponenol A, B concentrations in soybean seeds and sprouts. Korean J. Crop Sci. 55(2):165-176.
  10. Kudou, S., Y. Fleury, D. Welt, D. Magnolato, T. Uchida, K. Kitamura and K. Okubo. 1991. Malonyl isoflavones glycosides in soybean seeds (Glycine Max Merrill). Agric. Biol. Chem. 55:2227-2233.
  11. Kuzuhara, H., S. Nishiyama, N. Minowa, K. Sasaki and S. Omoto. 2000. Protective effects of soyasapogenol A on liver injury mediated by immune response in a concanavalin Ainduced hepatitis model. Eur. J. Pharmacol. 391:175-181. https://doi.org/10.1016/S0014-2999(99)00931-0
  12. Lee, K.S., S.Y. Woo, M.J. Lee, H.Y. Kim, H. Ham, D.J. Lee, S.W. Choi and W.D. Seo. 2020. Isoflavones and soyasaponins in the germ of Korean soybean [Glycine max (L.) Merr.] cultivars and their compound-enhanced BMP-2-induced bone formation. Appl. Biol. Chem. 63:26. https://doi.org/10.1186/s13765-020-00508-y
  13. Lee, S., Y.B. Lee and H.S. Kim. 2013. Analysis of the general and functional components of various soybeans. J. Korean Soc. Food Nutr. 42:1255-1262. https://doi.org/10.3746/jkfn.2013.42.8.1255
  14. Matsuda, H., M. Nakayasu, Y. Aoki, S. Yamazaki, A.J. Nagano, K. Yazaki and A. Sugiyama. 2020. Diurnal metabolic regulation of isoflavones and soyasaponins in soybean roots. American Soc. Plant Biolog. 4:e00286.
  15. Messina, M.J., V. Persky, K.D. Setchell and S. Barnes. 1994. Soy intake and cancer risk: a review of the in vitro and in vivo data. Nutr. Cancer. 21(2)113-131. https://doi.org/10.1080/01635589409514310
  16. Monma, M., J. Terao, M. Ito, M. Saito and K. Chikuni. 1994. Carotenoid components in soybean seeds varying with seed color and maturation stage. Biosci. Biotech. Biochem. 58(5): 926-930. https://doi.org/10.1271/bbb.58.926
  17. Sohn, S.I., S. Pandian, Y.J. Oh, H.J. Kang, W.S. Cho and Y.S. Cho. 2021. Metabolic engineering of isoflavones: An updated overview. Front. Plant Sci. 12:670103. https://doi.org/10.3389/fpls.2021.670103
  18. Sundaramoorthy, J., S. Palaniswamy, G.T. Park, H.R. Son, C. Tsukamoto, J.D. Lee, J.H. Kim, H.S. Seo and J.T. Song. 2019. Characterization of a new sg-5 variant with reduced biosynthesis of group A saponins in soybean (Glycine max (L.) Merr.). Mol. Breeding 39:144. https://doi.org/10.1007/s11032-019-1066-4
  19. Tsukamoto, C., A. Kikuchi, K. Harada, K. Kitamura and K. Okubo. 1993. Genetic and chemical polymorphisms of saponins in soybean seed. Phytochemistry 34(5):1351-1356. https://doi.org/10.1016/0031-9422(91)80028-Y
  20. Yang, M., J.S. Kwak, S.R. Jang, Y.N. Jia and I.S. Park. 2013. Antioxidant activity of soybean yogurt added to tomato extract by Bacillus subtilis and Lactobacillus plantarum. Korean J. Food Nutr. 26:280-286. https://doi.org/10.9799/ksfan.2013.26.2.280
  21. Yano, R., K. Takagi, S. Tochigi, Y. Fujisawa, Y. Nomura, H. Tsuchinaga, Y. Takahashi, Y. Takada, A. Kaga, T. Anai, C. Tsukamoto, H. Seki, T. Muranaka and M. Ishimoto. 2018. Isolation and characterization of the soybean Sg-3 gene that is involved in genetic variation in sugar chain composition at the C-3 position in soyasaponins. Plant Cell Physiol. 59(4): 797-810. https://doi.org/10.1093/pcp/pcy019