• Title/Summary/Keyword: soyasapogenol A and B

Search Result 9, Processing Time 0.026 seconds

Metabolism of Soyasaponin I by Human Intestinal Microflora and Its Estrogenic and Cytotoxic Effects

  • Chang, Seo-Young;Han, Myung-Joo;Han, Sang-Jun;Kim, Dong-Hyun
    • Biomolecules & Therapeutics
    • /
    • v.17 no.4
    • /
    • pp.430-437
    • /
    • 2009
  • Metabolites of Soyasaponin I, a major constituent of soybean, by human intestinal microflora were investigated by LC-MS/MS analysis. We found four peaks, one parental constituent and three metabolites: m/z 941 [M-H]$^-$, m/z 795 [M-rha-H]$^-$, m/z 441 [aglycone-$H_2O$+H]$^+$, and m/z 633 [M-rha-gal-H]$^-$, which was an unknown metabolite, soyasapogenol B 3-$\beta$-D-glucuronide. When soyasaponin I was incubated with the human fecal microbial fraction from ten individuals for 48 h, soyasaponin I was metabolized to soyasapogenol B via soyasaponin III and soyasapogenol B 3-$\beta$-D-glucuronide or via soyasaponin III alone. Both soyasaponin I and its metabolite soyasapgenol B exhibited estrogenic activity. Soyasaponin I increased the proliferation, mRNA expression of c-fos and pS2, in MCF7 cells more potently than soyasapogenol B. However, soyasapogenol B showed potent cytotoxicity against A549, MCF7, HeLa and HepG2 cells, while soyasaponin I did not. The cytotoxicity of soyasapogenol B may prevent its estrogenic effect from increasing dose-dependently. These findings suggest that orally administered soyasaponin I may be metabolized to soyasapogenol B by intestinal microflora and that soyasapogenol B may express a cytotoxic effect rather than an estrogenic effect.

Comparison of Soyasapogenol A, B Concentrations in Soybean Seeds and Sprouts

  • Kang, Eun-Young;Kim, Seung-Hyun;Kim, Sun-Lim;Seo, Su-Hyun;Kim, Eun-Hye;Song, Hong-Keun;Ahn, Joung-Kuk;Chung, Ill-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.2
    • /
    • pp.165-176
    • /
    • 2010
  • Soybean seeds contain many biologically active secondary metabolites, such as proteins, saponins, isoflavones, phytic acids, trypsin inhibitors and phytosterols. Among them, saponins in soybeans have attracted considerable interest because of their health benefits. Soyasaponin A and B are the most abundant types of saponins found in soybeans along with soyasapogenol (aglycone), which is a precursor of soyasaponin. The main purpose of this experiment was to determine the concentration of soyasapogenol in soybean seeds and sprouts as a function of seed size, usage, seed coat color and seed cotyledon color. The 79 Korean soybean varieties were cultivated at Yesan of Chungnam in 2006 for the analysis of soyasapogenol using HPLC with Evaporative Light Scattering Detection (ELSD). The total average concentration of soyasapogenol was $1313.52{\mu}g\;g^{-1}$ in soybean seeds and $1377.22{\mu}g\;g^{-1}$ in soybean sprouts. Soybean sprouts were about 5% higher than soybean seeds in average total soyasapogenol concentration. In the process of sprouting, the average soyasapogenol A content decreased by approximately 1.6%, but soyasapogenol B and total soyasapogenol increased by 8.31% and 4.88%, based on the content of soybean seeds. When classified according to the size of seeds, the total soyasapogenol concentration of soybean seeds were not significantly different (p<0.05) On average, small soybean seeds were increased by as much as $103.14{\mu}g\;g^{-1}$ in sprouting process. As a function of the use of the seeds, The total soyasapogenol in soybean seeds were significantly different (p<0.05). While, the soybean sprouts were not significant different (p<0.05). Altogether, sprout soybean seeds show the greatest change in content during the germination process. When seeds with different coat colors were compared, the total soyasapogenol concentration of soybean with yellow seed coats ($1357.30\mu g\;g^{1}$) was slightly higher than that of soybean with black ($1260.30{\mu}g\;g^{-1}$) or brown ($1263.62{\mu}g\;g^{-1}$) seed coats. For the color of the cotyledon, the total soyasapogenol concentration was significantly increased in green cotyledon during the germination and seedling process. The results of this study suggest the functional characteristics of soybeans through quantitative analysis of soyasapogenol. In addition, the concentration of soyasapogenol exhibited a change during the germination process, which was evaluated by the nutritional value of the soybean sprouts.

A fragmentation database of soyasaponins by liquid chromatography with a photodiode array detector and tandem mass spectrometry

  • Son, Haereon;Mukaiyama, Kyosuke;Omizu, Yohei;Tsukamoto, Chigen
    • Analytical Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.172-179
    • /
    • 2021
  • Oleanane-type triterpenoids exist as secondary metabolites in various plants. In particular, soyasaponin, an oleanane-type triterpenoid, is abundant in the hypocotyl of soybean, one of the most widely cultivated crops in the world. Depending on their chemical structure, soyasaponins are categorized as group A saponins or group DDMP (2,3-dihydro-2,5-dihydroxy-6-methyl-4H-pyran-4-one) saponins. The different soyasaponin chemical structures present different health functionalities and taste characteristics. However, conventional phenotype screening of soybean requires a substantial amount of time for functionality of soyasaponins. Therefore, we attempted to use liquid chromatography with a photodiode array detector and tandem mass spectrometry (LC-PDA/MS/MS) for accurately predicting the phenotype and chemical structure of soyasaponins in the hypocotyl of five common soybean natural mutants. In this method, the aglycones (soyasapogenol A [SS-A] and soyasapogenol B [SS-B]) were detected after acid hydrolysis. These results indicated that the base peak and fragmentation differ depending on the chemical structure of soyasaponin with aglycone. Thus, a fragmentation database can help predict the chemical structure of soyasaponins in soyfoods and plants.

Comparison of Chemical Constituents in Mung bean (Vigna radiata L.) Flour between Cultivation Regions and Seeding Dates

  • An, Yeon Ju;Kim, Mi Jung;Han, Sang Ik;Chi, Hee-Youn;Kwon, Chang;Kim, So Yeon;Yang, Yu Jin;Kim, Yun Ju;Moon, Hee Sung;Kim, Seung-Hyun;Chung, Ill-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.65 no.4
    • /
    • pp.457-467
    • /
    • 2020
  • Legumes are one of the largest families of crop plants and are widely consumed and produced for their nutritional and commercial benefits. Mung bean (Vigna radiata L.) is a legume crop that contains various functional compounds ; moreover, it has strong antioxidant properties and is becoming an increasingly important food crop. However, most previous studies on mung beans have focused on their primary metabolites. In this study, we investigated the composition and contents of phenolic compounds, fatty acids, soyasapogenol and tocopherol in mung beans cultivated in different regions and cultivated at different seeding dates. Material analysis was conducted using the following methods: LC-MS/MS, GC-FID and HPLC-ELSD. In total, 57 different samples were analyzed. Thirteen phenolic compounds were detected in mung beans. Of these, vitexin and isovitexin were the most abundant compounds, accounting for approximately 99% of phenolic compounds. The difference in phenol compounds according to the seeding dates of mung bean was not statistically significant. The total fatty acid content in beans was the highest in Pyeongchang. Significant differences in total fatty acid content were found according to the cultivation regions. Crops grown in Sohyeon and Dahyeon showed the highest soyasapogenol B content in the Suwon region, and these were the lowest in Jeonju. The total tocopherol content of beans cultivated in Dahyeon and Sohyeon was the lowest and highest in Pyeongchang. Soyasapogenol B and total tocopherol content were not significantly different according to seeding dates. This study was conducted to obtain basic data for the cultivation of mung beans with a high content of various functional materials in terms of regional specialization and optimal seeding time.

Isolation of Azukisaponin V Possessing Leucocyte Migration Inhibitory Activity from Melilotus officinalis

  • Kang, Sam-Sik;Lee, Young-Soon;Lee, Eun-Bang
    • Korean Journal of Pharmacognosy
    • /
    • v.18 no.2
    • /
    • pp.89-93
    • /
    • 1987
  • Chemical investigation of the inhibitory compound on leucocyte migration from Melilotus officinalis has led to the isolation and characterization of azukisaponin V $(3-O-[{\alpha}-L-rhamonopyranosyl(1{\rightarrow}2)-{\beta}-D-glucopyransosyl(1{\rightarrow}2)-{\beta}-D-glucuronopyranosyl]-soyasapogenol B)$ as the carboxylate form, which exhibits potent leucocyte migration inhibitory activity at a dose of 6mg/rat.

  • PDF

Constituents of Egyptian Astragalus tribuloides Del.

  • El-Sebakhy, Nadia A.;Asaad, Aya M.;Abdallah, Rokia M.;Toaima, Soad M.;Verotta, Luisella;Orsini, Fulvia
    • Natural Product Sciences
    • /
    • v.6 no.1
    • /
    • pp.11-15
    • /
    • 2000
  • Two soyasaponins were isolated from the aerial parts of Astragalus tribuloides Del. Their structures were established on the basis of spectroscopic and chemical methods. In addition, ursolic acid, ${\beta}-sitosterol\;{\beta}-D-glucoside$ and isorhamnetin 3-O-glucoside were isolated and identified by comparing their mp, spectral and chromatographic data with those of authentic samples. This is the first report of screening and isolation of the chemical constituents of this species of genus Astragalus.

  • PDF

Saponins and Flavonoid Glycosides from Yellow Sweetclover

  • Kang, Sam-Sik;Lee, Young-Soon;Lee, Eun-Bang
    • Archives of Pharmacal Research
    • /
    • v.11 no.3
    • /
    • pp.197-202
    • /
    • 1988
  • A new saponin, 3-O-[${\alpha}$-L-rhamnopyranosyl$(1{\rightarrow}2)$-${\beta}$-D-glucopyranosyl$(1{\rightarrow}2)$-${\beta}$-D-glucuronopyranosyl]soyasapogenol B carboxylate (6) has been isolated from the medicinal plant yellow sweetclover together with azukisaponin II(7), robinin(8), and clovin(9). 7,8, and 9 are reported for the first time from this plant. The new saponin(6) exhibited inhibitory action on leucocyte migration in inflammation.

  • PDF

Biological Activities of Soyasaponins and Their Genetic and Environmental Variations in Soybean (콩 Saponin의 생리활성 기능과 함량변이)

  • 김용호
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.48
    • /
    • pp.49-57
    • /
    • 2003
  • There is much evidence suggesting that compounds present in soybean can prevent cancer in many different organ systems. Especially, soybean is one of the most important source of dietary saponins, which have been considered as possible anticarcinogens to inhibit tumor development and major active components contributing to the cholesterol-towering effect. Also they were reported to inhibit of the infectivity of the AIDS virus (HIV) and the Epstein-Barr virus. The biological activity of saponins depend on their specific chemical structures. Various types of triterpenoid saponins are present in soy-bean seeds. Among them, group B soyasaponis were found as the primary soyasaponins present in soybean, and th e 2, 3-dihydro-2, 5-dihydroxy-6- methyl-4H-pyran-4-one(DDMP)-conjugated soyasaponin $\alpha\textrm{g}$, $\beta\textrm{g}$, and $\beta$ a were the genuine group B saponins, which have health benefits. On the other hand, group A saponins are responsible for the undesirable bitter and astringent taste in soybean. The variation of saponin composition in soybean seeds is explained by different combinations of 9 alleles of 4 gene loci that control the utilization of soyasapogenol glycosides as substrates. The mode of inheritance of saponin types is explained by a combination of co-dominant, dominant and recessive acting genes. The funtion of theses genes is variety-specific and organ specific. Therefore distribution of various saponins types was different according to seed tissues. Soyasaponin $\beta\textrm{g}$ was detected in both parts whereas $\alpha\textrm{g}$ and $\beta$ a was detected only in hypocotyls and cotyledons, respectively. Soyasaponins ${\gamma}$g and $\gamma\textrm{g}$ were minor saponin constituents in soybean. In case group A saponins were mostly detected in hypocotyls. Also, the total soyasaponin contents varied among different soy-bean varieties and concentrations in the cultivated soy-beans were 2-fold lower than in the wild soybeans. But the contents of soyasaponin were not so influenced by environmental effects. The composition and concentration of soyasaponins were different among the soy products (soybean flour, soycurd, tempeh, soymilk, etc.) depending on the processing conditions.

Composition of Isoflavone, Phytic Acid, and Saponins in Hypocotyls and Cotyledons of Six Traditional Korean Soybeans

  • Kim, Kang-Sung
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.3
    • /
    • pp.195-201
    • /
    • 2007
  • The objective of present study was to examine the composition of functional components (isoflavones, phytic acid, and saponin) in hypocotyls and cotyledons of six traditional Korean soybeans, namely Cheongtae, Seoritae, Jinjoori, Subaktae, Yutae, and Huktae. Three 'family' of isoflavones, as four chemical structures were present in hypocotyls and cotyledons of six soybean cultivars: the aglycones genistein, daidzein, and glycitein; the glycosides genistin, daidzin, and glycitin; the acetylglycosides 6"-O-acetylgenistin, 6"-O-acetyldaidzin, and 6"-O-acetylglycitin; and the malonylglycosides 6"-O-malonylgenistin, 6"-O-malonyldaidzin, and 6"-O-malonylglycitin. Isoflavone contents of hypocotyls and cotyledons differed among the cultivars, and glucosides and malonylglucosides accounted for more than 90% of the total phytoestrogens, with the remaining $1\sim7%$ taken up by aglycones. Concentrations of isoflavones in cotyledons were approximately about $10\sim20%$ of respective hypocotyls. Contents of phytic acids in hypocotyls and cotyledons of the selected soybean cultivars were $1.21\sim1.70%$ and $2.59\sim3.01%$, respectively. Hypocotyls of Seoritae showed the lowest content of phytic acid with 1.21%, while cotyledons of Cheongtae showed the highest content with 3.01%. The sapogenol concentrations ranged from $13.58mg/100g\sim20.82mg/100g$ for hypocotyls and $0.95mg/100g\sim2.55mg/100g$ for cotyledons showing that concentrations of saponin are $7\sim10$ times higher in hypocotyls than in cotyledons of respective soybeans. For both hypocotyls and cotyledons the sapogenol A were present in higher concentrations than soyasapogenol B.