• Title/Summary/Keyword: southern sea

Search Result 1,314, Processing Time 0.022 seconds

Variability of Contribution of Picophytoplankton in the Phytoplankton Community in the Southwestern East Sea (가을철 동해 남서부해역 초미소식물플랑크톤의 전체 식물플랑크톤 생체량에 대한 기여도 변동성)

  • PARK, MI OK;LEE, YE JI
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.77-87
    • /
    • 2017
  • Picophytoplankton, an important primary producer especially at the oligotrophic region, is known to contribute a significant portion of the total phytoplankton biomass in the East Sea of Korea. During autumn in the southwestern East Sea, frequent upwellings and oligotrophic conditions occur and annual variation of primary productivity is known to be significant. Moreover sea surface temperature (SST) of the East Sea is steeply increasing compared to global average increase, so various changes in marine ecosystem related with increase of SST are reported. Taking such circumstances into consideration, we measured the contribution from picophytoplankton fraction to total phytoplankton composition by size fraction of phytoplankton biomass during the autumn seasons from 2011, 2013 and 2015 and examined the variation of the phytoplankton composition. As a result of size fraction analyses, we found that the variation of contribution from picophytoplankton(<$3{\mu}m$) to total community of phytoplankton was high and the average fractions of picophytoplankton were measured as 38% (2011), 59% (2013), 7% (2015), respectively. The difference between measured SST and annual mean SST (${\Delta}T$) was highest ($+1.6^{\circ}C$) in autumn of 2013 and lowest ($-0.9^{\circ}C$) in autumn of 2015. The close positive correlation between ${\Delta}SST$ and fraction of picophytoplankton was confirmed($R^2$ > 0.9). The increase in SST at the southern East Sea was confirmed as one of the main environmental factors in the increase in the increase of the contribution from picophytoplankton. Monitoring of changes in the community structure of primary producers and the influences of the environmental factors including SST in the East Sea is necessary to understand the interactions of ecosystem of the East Sea and the climate change in the near future.

Analysis of Water Temperature Variations in Coastal Waters of the Korean Peninsula during Typhoon Movement (태풍 이동시 한반도 해역별 수온 변동 분석)

  • Juyeon Kim;Seokhyun Youn;Myunghee Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.1
    • /
    • pp.1-12
    • /
    • 2024
  • In this study, we analyzed the water temperature variability in the sea area of the Korean Peninsula in August, before and after the typhoon inflow through Typhoon Soulik, the 19th in 2018 that turned right around the Korean Peninsula and passed through the East Sea, and Typhoon Bavi, the eighth in 2020 that advanced north and passed through the Yellow Sea. The data used in this study included the water temperature data recorded in the real-time information system for aquaculture environment provided by the National Institute of Fisheries Science, wind data near the water as recorded by the automatic weather system, and water temperature data provided by the NOAA/AVHRR satellite. According to the analysis, when typhoons with different movement paths passed through the Korean Peninsula, the water temperature in the East Sea repeatedly upwelled (northern winds) and downwelled (southern winds) depending on the wind speed and direction. In particular, when Typhoon Soulik passed through the East sea, the water temperature dropped sharply by around 10 ℃. When Typhoon Bavi passed through the center of the Yellow Sea, the water temperature rose in certain observed areas of the Yellow Sea and even in certain areas of the South Sea. Warmer water flowed into cold water regions owing to the movement of Typhoon Bavi, causing water temperature to rise. The water temperature appeared to have recovered to normal. By understanding the water temperature variability in the sea area of the Korean Peninsula caused by typhoons, this research is expected to minimize the negative effects of abnormal climate on aquaculture organisms and contribute to the formulation of damage response strategies for fisheries disasters in sea areas.

Impacts of Argo temperature in East Sea Regional Ocean Model with a 3D-Var Data Assimilation (동해 해양자료동화시스템에 대한 Argo 자료동화 민감도 분석)

  • KIM, SOYEON;JO, YOUNGSOON;KIM, YOUNG-HO;LIM, BYUNGHWAN;CHANG, PIL-HUN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.3
    • /
    • pp.119-130
    • /
    • 2015
  • Impacts of Argo temperature assimilation on the analysis fields in the East Sea is investigated by using DAESROM, the East Sea Regional Ocean Model with a 3-dimensional variational assimilation module (Kim et al., 2009). Namely, we produced analysis fields in 2009, in which temperature profiles, sea surface temperature (SST) and sea surface height (SSH) anomaly were assimilated (Exp. AllDa) and carried out additional experiment by withdrawing Argo temperature data (Exp. NoArgo). When comparing both experimental results using assimilated temperature profiles, Root Mean Square Error (RMSE) of the Exp. AllDa is generally lower than the Exp. NoArgo. In particular, the Argo impacts are large in the subsurface layer, showing the RMSE difference of about $0.5^{\circ}C$. Based on the observations of 14 surface drifters, Argo impacts on the current and temperature fields in the surface layer are investigated. In general, surface currents along the drifter positions are improved in the Exp. AllDa, and large RMSE differences (about 2.0~6.0 cm/s) between both experiments are found in drifters which observed longer period in the southern region where Argo density was high. On the other hand, Argo impacts on the SST fields are negligible, and it is considered that SST assimilation with 1-day interval has dominant effects. Similar to the difference of surface current fields between both experiments, SSH fields also reveal significant difference in the southern East Sea, for example the southwestern Yamato Basin where anticyclonic circulation develops. The comparison of SSH fields implies that SSH assimilation does not correct the SSH difference caused by withdrawing Argo data. Thus Argo assimilation has an important role to reproduce meso-scale circulation features in the East Sea.

Satellite-altimeter-derived East Sea Surface Currents: Estimation, Description and Variability Pattern (인공위성 고도계 자료로 추정한 동해 표층해류와 공간분포 변동성)

  • Choi, Byoung-Ju;Byun, Do-Seong;Lee, Kang-Ho
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.17 no.4
    • /
    • pp.225-242
    • /
    • 2012
  • This is the first attempt to produce simultaneous surface current field from satellite altimeter data for the entire East Sea and to provide surface current information to users with formal description. It is possible to estimate surface geostrophic current field in near real-time because satellite altimeters and coastal tide gauges supply sea level data for the whole East Sea. Strength and location of the major currents and meso-scale eddies can be identified from the estimated surface geostrophic current field. The mean locations of major surface currents were explicated relative to topographic, ocean-surface and undersea features with schematic representation of surface circulation. In order to demonstrate the practical use of this surface current information, exemplary descriptions of annual, seasonal and monthly mean surface geostrophic current distributions were presented. In order to objectively classify surface circulation patterns in the East Sea, empirical orthogonal function (EOF) analysis was performed on the estimated 16-year (1993-2008) surface current data. The first mode was associated with intensification or weakening of the East Korea Warm Current (EKWC) flowing northward along the east coast of Korea and of the anti-cyclonic circulation southwest of Yamato Basin. The second mode was associated with meandering paths of the EKWC in the southern East Sea with wavelength of 300 km. The first and second modes had inter-annual variations. The East Sea surface circulation was classified as inertial boundary current pattern, Tsushima Warm Current pattern, meandering pattern, and Offshore Branch pattern by the time coefficient of the first two EOF modes.

Relationship between Squid (Todarodes pacificus) Catch by Sea Block and Marine Environment in the East Sea during 1980s and 1990s (1980-1990년대 동해에서 해구별 오징어(Todarodes pacificus) 어획량과 해양환경의 관계)

  • Kim, Yoon-Ha;Moon, Chang-Ho;Choi, Kwang-Ho;Lee, Chung-Il
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.16 no.3
    • /
    • pp.259-268
    • /
    • 2010
  • Data on squid catches by the Korean jig fishery in sea blocks ($30'{\times}30'$), water temperatures at depth(30m, 50m and 100m) and zooplankton biomass in the East Sea from 1980 to 1999 were analyzed to examine the mechanism of formation of the high density stock area. Japanese common squid (Todarodes pacificus) catch in the East Sea was low in 1980s, while the catch was high in 1990s. The five sea blocks (No. 76, 82, 83, 87, 88) of the southern part in the eastern coastal waters of Korea showed high levels of percentage of total catch (35.1%), whereas the four sea blocks (No. 65, 71, 72, 78) of the coastal waters of Uleung Island showed high levels of percentage of CPUE (61.2%) for 20 years. Squid catches showed monthly fluctuations according to the vertical distribution of optimum water temperature for fishing ($14^{\circ}C{\sim}19^{\circ}C$). High total catch and high CPUE area matched well with $10^{\circ}C$ isothermal lines at 100m depth indicating northern limiting of Tsushima Warm Current, and temporal and spatial change in $10^{\circ}C$ isothermal line caused the change in total catch and CPUE. Horizontal distribution of zooplankton biomass by sea block was not matched well with those of total catch and CPUE, however pattern of time-series change in total zooplankton biomass was similar to that in total squid catch.

Studies on Distribution, Characterization and Detoxification of Shellfish Toxin in Korea 3. Detoxification of Paralytic Shellfish Poison of Sea Mussel, Mytilus edulis (한국산 주요패류에 대한 독의 분포, 특성 및 제독에 관한 연구 3. 마비성패류독의 제독에 관하여)

  • CHANG Dong-Suck;SHIN Il-Shik;GOO Hyo-Young;OH Eun-Gyung;PYUN Jae-Hyeung;PARK Young-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.5
    • /
    • pp.288-291
    • /
    • 1988
  • We have veen already reported the distribution of PSP of bivalve mollusca in southern coast of Korea and also analyzed their characteristics. The purpose of this study was to develop detoxification method for PSP infested sea mussel, Mytilus edulis, by rearing methods or processing treatments. There was no significant detoxification effect when the PSP infested sea mussel was reared in a tank with water recirculation system, but the toxicity of sea mussel rapidly decreased during the rearing time in a water flow system with filtered water. The detoxification rate of PSP during the rearing for 5 days in a water flow system tank with $15-17^{\circ}C$ of sea water was $94\%$ in case of high toxic sample with more than $2,600{\mu}g/100g$ and about $40\%$ in case of low toxic sample with less than $100{\mu}g/100g$. The toxicity of PSP extracted from the sample with 0.1N/ HCl solution was about 2-5 times higher than that extracted with distilled water. When sea mussel contained $100-150{\mu}g-PSP$ per 100g of edible meat was boiled for 30 min with tap water, the toxicity was destroyed as the level of PSP undetected by mouse assay. We can suggest that boiling of sea mussel with tap water was one of the most significant detoxification methods, but it was not enough to be safe in case of extremely high intoxicated sea mussel with PSP. For example, the digestive gland of sea mussel contained more than $9593{\mu}g/100g$ was heated in a can with tap water at $116^{\circ}C$ for 65 min. the residual PSP was more than $170{\mu}g$.

  • PDF

Studies on Distribution, Characterization and Detoxification of Shellfish Toxin in Korea 3. Detoxification of Paralytic Shellfish Poison of Sea Mussel, Mytilus edulis (한국산 주요패류에 대한 독의 분포, 특성 및 제독에 관한 연구 3. 마비성패류독의 제독에 관하여)

  • CHANG Dong-Suck;SHIN Il-Shik;GOO Hyo-Young;OH Eun-Gyung;PYUN Jae-Hyeung;PARK Young-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.5
    • /
    • pp.297-302
    • /
    • 1988
  • We have veen already reported the distribution of PSP of bivalve mollusca in southern coast of Korea and also analyzed their characteristics. The purpose of this study was to develop detoxification method for PSP infested sea mussel, Mytilus edulis, by rearing methods or processing treatments. There was no significant detoxification effect when the PSP infested sea mussel was reared in a tank with water recirculation system, but the toxicity of sea mussel rapidly decreased during the rearing time in a water flow system with filtered water. The detoxification rate of PSP during the rearing for 5 days in a water flow system tank with $15-17^{\circ}C$ of sea water was $94\%$ in case of high toxic sample with more than $2,600{\mu}g/100g$ and about $40\%$ in case of low toxic sample with less than $100{\mu}g/100g$. The toxicity of PSP extracted from the sample with 0.1N/ HCl solution was about 2-5 times higher than that extracted with distilled water. When sea mussel contained $100-150{\mu}g-PSP$ per 100g of edible meat was boiled for 30 min with tap water, the toxicity was destroyed as the level of PSP undetected by mouse assay. We can suggest that boiling of sea mussel with tap water was one of the most significant detoxification methods, but it was not enough to be safe in case of extremely high intoxicated sea mussel with PSP. For example, the digestive gland of sea mussel contained more than $9593{\mu}g/100g$ was heated in a can with tap water at $116^{\circ}C$ for 65 min. the residual PSP was more than $170{\mu}g$.

  • PDF

Distributions of $^{226}Ra$\;and\;^{228}Ra$in the Surface Waters of East Sea of Korea (한국 동해 표층수중 $^{226}Ra$$^{228}Ra$의 농도분포)

  • YANG Han-Soeb;KWON Yeoung-Ann;KIM Gue-Buem;KIM Seong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.25 no.5
    • /
    • pp.399-405
    • /
    • 1992
  • Using $MnO_2-coated$ fiber extraction and gamma counting techniques, we measured the distributions of $^{226}Ra$\;and\;^{228}Ra$ in the surface waters at 14 stations of East Sea of Korea in September, 1988. The concentrations of $^{226}Ra$\;and\;^{228}Ra$ in the surface waters ranged $70-110\;dpm/10^3l$ and 102=232 $dpm/10^3l$, respectively. In general, the concentrations of Ra isotopes were shown higher in the coastal and southern stations than those in the outer and northern stations in our observed area. Also, the concentrations of Ra isotopes in the study area were significantly higher than values in the other area of the East Sea and Kuroshio surface water, but much lower than the concentrations in the surface water of Yellow Sea reported previously. There was an inverse relationship between the $^{226}Ra/^{228}Ra$ ratio and salinity in the surface waters of Kuroshio, Yellow Sea and East Sea of Korea. This indicates that the continental shelf waters such as Yellow Sea and East China Sea are main source of Ra isotopes in surface waters of the East Sea of Korea.

  • PDF

A Relationship between Oceanic Conditions and Meteorological Factors in the Western Sea of Korea in Winter (동계 서해의 해황과 기상인자와의 관계)

  • Go Woo-Jin;Kim Sang-Woo;Kim Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.1 s.24
    • /
    • pp.23-32
    • /
    • 2006
  • This study was conducted to find out the effects of meterological factors on oceanic conditions when cold and dry continental air mass passes through the western sea of Korea The change of ocean conditions during the winter season were more obvious in coastal area than open sea And sea surface temperature (SST) during February is lower by $3^{\circ}C$ than December but in coastal area SST dropped by $3^{\circ}C$. As for the salinity, there was not much difference between areas except southern area of Mokpo. In the coastal regions, air temperature(AT) and SST showed a positive correlation; as the air temperature goes up with the increase of SST and when the former goes down the latter decrease. SST of open sea seems to be changed by latent (Qe) and sensible heat (Qs), when the open sea lose its heat by Qe and Qs then SST goes down And when they get the heat then the SST goes up. 1here was a positive correlation between the AT of the coastal region and sea surface salinity (SSS), when the AT goes up then SSS increase and when the former goes down the latter decrease. Precipitation during the summer seasons (June$\sim$September) appeared to the more closely related with salinity of February of the following year than those of October and December.

  • PDF

Relationship between SST Fronts and Purse-seine Fishing Grounds in the South-West Sea of Korea and the Northern Area of the East China Sea (한국 남$\cdot$서해 및 동중국해$\cdot$북부해역에 출현하는 표층수온전선과 선망어장과의 관계)

  • YANG Young Jin;KIM Sang Hyun;RHO Hong Kil;JEONG Dong Gun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.32 no.5
    • /
    • pp.618-623
    • /
    • 1999
  • A relationship between SST (Sea Surface Temperature) fronts and formation of fishing grounds was examined using the data on fishing conditions obtained from 41 Korean purse-seiners during the period of 1991 to 1996. Good fishing grounds observed in the southern sea of Korea and the nothern area of the East China Sea were yearly found around the frontal zone and around the marginal area of Tsushima Current which was the periphery of fronts, Also, there were several fishing grounds, which are not related to the fronts. They can be classified into the following four types : The first type was found in the warm water pocket located in the western area of Cheju Island in winter. The second type was made in a intensive bending of isobathytherm with a higher temperature in the main stream of Tsushima Current between Cheju Island and the Goto Islands in winter. The third type was formed by the topographical vortex motion near the Tsushima Island in winter and spring. The fourth type was found at the area of the reflow Sea Warm Current in southwest sea of Korea between the costal front zone and the Yellow Bottom Cold Waters in summer and autumn.

  • PDF