• Title/Summary/Keyword: southeastern area

Search Result 344, Processing Time 0.026 seconds

The study on the Igneous Activity in the Southeastern Zone of the Ogcheon Geosynclinal Belt, Korea(I) with the Igneous Activity in Namweon-Geochang-Sangju Area (옥천지향사대(沃川地向斜帶) 동남대(東南帶)에서의 화성활동(火成活動)(I): 남원(南原)-거창(居昌)-상주(尙州) 지역(地域)을 중심(中心)으로)

  • Kim, Yong Jun;Park, Yong Seog;Choo, Seung Hwan;Oh, Mihn Soo
    • Economic and Environmental Geology
    • /
    • v.22 no.4
    • /
    • pp.355-370
    • /
    • 1989
  • Igneous rocks of study area consist of Pre-Cambrian orthogneiss, Devonian granite, Triassic foliated granites and Jurassic granites distributed along the southeast margin of Ogcheon Geosynclinal belt(SE-zone), and irregular shaped granitic stocks in the central part of the belt(C-zone). Anorthosite and gaabbro are also present in southern part of the SE-zone in the belt and intruded into gneiss complex of Ryongnam massif. Distribuition of foliated granites shows three linear arrangements which are composed of hornblende-biotite foliated granodiorite, porphyritic foliated granodiorite, biotite foliated granodiorite, leuco foliated granite and two mica foliated granite. Foliated granites generated by dextral strike slip movement at deep level. Jurassic granites composed of several rock facies are considered to be formed by differentiation of magma during Daebo Orogeny. A general trend of the chemical composition of these igneous rocks in study area suggests that most of them corresponding to calc-alkaline rock series was affected under orogeny and I-type granite except for two mica foliated granite. In chondrite normalised REE pattern of these igneous rocks, LREE shows more variable range and strong (-)Eu anomaly than HREE. Geochronological episodes of igneous activity from early Proterozoic to Cretaceous in SE-zone of Ogcheon Geosynclinal belt are two more Pre-Cambrian Orogeny, Devonian Orogeny(Variscan), Songrim Disturbance, Daebo Orogeny and Bulkuksa Disturbance.

  • PDF

Invasion potential of Kappaphycus alvarezii on corals at Kurusadai Island, Gulf of Mannar, India

  • Mandal, Subir Kumar;Mantri, Vaibhav A.;Haldar, Soumya;Eswaran, Karuppanan;Ganesan, Meenakshisundaram
    • ALGAE
    • /
    • v.25 no.4
    • /
    • pp.205-216
    • /
    • 2010
  • The marine red alga Kappaphycus alvarezii is a major source of $\kappa$-carrageenan. It has been introduced in 20 countries including India. Recently, several reports have expressed concerns about Kappaphycus invasion on Acropora corals at Kurusadai Island in the Gulf of Mannar, India, which is part of a marine bioreserve. To understand the extent of the Kappaphycus invasion, 27 randomly selected locations around Kurusadai Island and the mainland coast were surveyed during May-August 2008 and July 2009. Our rigorous sampling revealed that K. alvarezii was confined to two different patches of 105 m $\times$ 55 m and 8 m $\times$ 9 m located at the southeastern part of Kurusadai Island. The actual extent of the K. alvarezii canopy coverage was 76.7 $m^2$, accounting for less than 0.0035% of the total coral reef area. The daily growth rate of the K. alvarezii at Kurusadai was 0.7%. K. alvarezii was not observed in the coral reef area of the adjoining Pullivasal and Poomarichan Islands or the Palk Bay area cultivation sites. The lack of functional reproductive cycle, low spore viability, and the absence of microscopic phases in the life cycle of this alga coupled with the abundance presence of herbivores may restrict the further spread of this alga, so its invasive potential at Kurusadai Island is considered remote.

Stratigraphic Erection and Orbicular Rocks of the Yeongdo Island, Busan, Korea -With Emphasis on Orbicular-Tuff and-Hornfels- (부산직할시(釜山直轄市) 영도지역(影島地域)의 층서설정(層序設定)과 구상암(球狀岩)에 관(關)한 연구(硏究) -구상(球狀)응회암과 구상(球狀)혼휄스를 중심(中心)으로-)

  • Kim, Haang Mook
    • Economic and Environmental Geology
    • /
    • v.17 no.4
    • /
    • pp.299-314
    • /
    • 1984
  • The Yeongdo Island in Busan City is a remnant of the latest Cretaceous volcano, and consists geologically of andesites, rhyolite tuff, pelitic and psammitic hornfelses, lapilli rhyodacite tuff of the Yucheon Group, felsite and felsite porphyry of the Bulgugsa intrusives, and Holocene sediments in ascending order. The hornfelses are bound to the Taejongdae Formation. The stratigraphic position of the Formation is determined definitely into the Yucheon Group, thus the geologic age is approximately the same with the volcanic rocks of the Group. The sediments had been thermally metamorphosed to make pelitic and psammitic hornfelses of the albite epidote hornfels facies by the effects of active hydrothermal circulation, vaporization, and hybridization of andesitic solution, or of basification of acidic intrusives. Thus, on occasion, those hornfelses are not used to be distinguished from the andesitic rocks in the southeastern part of the Korean peninsula. The paleocurrent direction determined from several cross-beddings of the Taejongdae Formation is suggested to be from southwest to northeast. Orbicular rocks occur in hornfelsed rhyolite tuff, pelitic- and psammitic-hornfelses, and felsite porphyry at a lot of outcrops in the area of southwestern shoreline of the Yeongdo Island. Orbicules in rhyolite tuff and hornfels in the island might have originated from diffusion processes of metasomatic metamorphism carried out by hydrothermal solution rised from the intrusive adamellite which may be emplaced deeply under the Yeongdo volcanics. Those orbicules are due to metasomatic, secondary, and epigenetic origin. Proto-, multi-shelled, and multi-cored orbicules are described in the orbicular tuff. But multi-cored orbicules are not found in the orbicular fornfels. 250 tuff-orbicules numbered sporadically are in $20,000m^2$ area of the locality of orbicular tuff. About 60 hornfels-orbicules occurred sporadically are in $1,700m^2$ area of the locality of orbicular hornfels in the Taejongdae Formation. Orbicules in felsite porphyry might have originated by diffusion reaction between xenoliths and a quiescent zone in felsite porphyry magma. Those are of igneous, primary, and syngenetic origin.

  • PDF

The characteristics of quaternary fault and coastal terrace around Suryumri area. (수렴리 일대에 발달하는 신기단층 및 해안단구의 층서 고찰)

  • 이병주;감주용;양동윤;정혜정
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.133-149
    • /
    • 2000
  • The study area which contains the coastal terrace of the southeastern part of Korean peninsula, well developed the lineaments which are NNE, NE and WNW directions. The area crops out Cretaceous sedimentary rocks and granite porphyry, Tertiary conglomerate, tuffite and basalt and Quarternary deposits. Coastal terraces are subdivided into low, middle and upper terraces(LT, MT, UT) based on the topographic levels. Terrace gravels are deposited on these wave-cut erosional surface during the initial lowering stage of sea level fluctuation. Terrace gravels are typified by granule to pebble layers with slightly inclined beddings. These gravels are interpreted as beach gravels belonging to berm or swash zone based on the present distribution of beach gravels. The Suryum fault is characterized by the thrust which is gradationally changing the strike from ENE to NNE. The extension of the fault is about 200m and Maximum displacement is about 1.5m.

  • PDF

Geology and Mineralization in Trapiche Cu-Mo Deposit, Apurimac State in Southeastern Peru (페루 남동부 아뿌리막주 트라피체 동-몰리브데늄 광상의 지질 및 광화작용)

  • Yang, Seok-Jun;Heo, Chul-Ho;Kim, You-Dong
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.525-536
    • /
    • 2015
  • Trapiche project corresponds to the advanced exploration stage which is thought to be a part of various porphyry copper deposits occurring in the margin of Andahuyalas-Yauri metallogenic belt. This deposit is genetically related to the monzonitic porphyry intrusion and Oligocene breccia pipe. Mineralization consists of primary sulfides such as pyrite, chalcopyrite, bornite, and molybdenite and secondary sulfides such as chalcocite, covellite and digenite. It occurs malachite, tenorite and cuprite as copper oxide. As a result of lixiviation or enrichment process, mineralization shows untypical zonation structure. Breccia and porphyry areas characterize the vertical zonation patterns. In the northern area, lixiviation zone, secondary enrichment zone, transitional zone and primary mineralized zone are distributed in northern area. In the western area of deposit, oxidation zone and mixed zones are narrowly occurred. Inferred resources of deposit is estimated to be 920 Mt @ 0.41% Cu with the cut-off grade of 0.15%.

Improvement in the Simulation of Sea Surface Wind over the Complex Coastal Area Using WRF Model (WRF 모형을 통한 복잡 연안지역에서의 해상풍 모의 개선)

  • Kim, Yoo-Keun;Jeong, Ju-Hee;Bae, Joo-Hyun;Oh, In-Bo;Kweon, Ji-Hye;Seo, Jang-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.3
    • /
    • pp.309-323
    • /
    • 2006
  • We focus on the improvement in the simulation of sea surface wind over complex coastal area located in the southeastern Korea. In this study, it was carried out sensitivity experiment based on PBL schemes and dynamic frame of MM5 and WRF. Two widely used PBL parameterization schemes were chosen : Medium-Range Forecast (MRF) and Mellor-Yamada-Janjic (MYJ). Thereafter, two cases of sea fog days with weak wind speed and typhoon days with strong wind speed were simulated and analyzed. The result of experiments indicated that wind fold of WRF model was shown more similar distribution with observational data, compared with that of MM5. Simulation of sea surface wind during sea fog days with weak wind speed and typhoon days with strong wind speed were shown similar horizontal distribution with observational data using MYJ and MRF PBL schemes of WRF model, respectively. Horizontal distribution of sea surface wind was more sensitive according to dynamic frame and PBL Schemes of model during sea fog days and typhoon days, respectively.

Standing Stocks and Spatial Distribution of Meiofauna on Deep-sea Sediment in an Environmental Impact Experiment of a Candidate Site for Manganese Nodule Development, NE Pacific (북동태평양 Clarion-Clipperton 균열대의 망간단괴 채광을 위한 환경충격시험 예정 지역 심해 해저면에 서식하는 중형저서생물 현존량 및 공간 분포 특성)

  • Min, Won-Gi;Rho, Hyun Soo;Kim, Dongsung
    • Journal of Environmental Science International
    • /
    • v.29 no.11
    • /
    • pp.1125-1139
    • /
    • 2020
  • This study investigated the distributional pattern of meiobenthos associated with future deep-sea mining in the Korea Deep Ocean Study area present in the Clarion-Clipperton Fracture Zone (CCFZ) located in the southeastern part of the North Pacific Ocean. Standing stocks of meiobenthos were investigated in benthic impact experiment sites (BIS) and Korea Institute of Ocean Science & Technology long-term monitoring (KOMO) sites during the 2008-2014 annual field survey. A total of 14 taxa of meiobenthos were identified. Nematodes were the most abundant taxon (60-86%). Harpacticoid copepods (5-26%) and benthic foraminifera (1-12%) were also dominant at all sites. The total meiobenthic densities varied from 4 to 150 ind./10 cm2. The mean value of total meiobenthic abundance was higher at BIS than at KOMO sites, but there was no significant difference between the two sites. The mean values of the number of taxa and biomass at BIS and KOMO sites were similar. The mean abundance of nematodes that were the most dominant taxa was also higher at BIS than at KOMO sites. The standing stocks in our study sites were relatively lower than those previously reported at other CCFZ sites. These results seem to reflect a low organic concentration in the study area.

Analysis of Influence Factors of Forest Soil Sediment Disaster Using Aerial Photographs - Case Study of Pyeongchang-county in Gangwon-province - (항공사진을 이용한 산지토사재해 영향인자 분석 - 강원도 평창군을 중심으로 -)

  • Woo, Choong-Shik;Youn, Ho-Joong;Lee, Chang-Woo;Jeong, Yongho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.1
    • /
    • pp.14-22
    • /
    • 2008
  • The forest soil sediment disasters occurred in Jinbu-myeon Pyeongchang county were investigated characteristics by the aerial photograph analysis. After digitizing from aerial photographs, forest soil sediment disaster sites were classified into 695 collapsed sites, 305 flowed sites and 199 sediment sites. DEM (Digital Elevation Model) were generated from 1 : 5,000 digital topographic map. Factors of geography, hydrology, biology, and geology were analyzed using DEM, geologic map, and forest stand map with aerial photographs by GIS spatial analysis technique. The forest soil sediment disasters were mainly occurred from southeastern slope to southwestern slope. In collapsed sit es, the average slope degree is $28.9^{\circ}$, the average flow length is 163.5m, the average area of drainage basin is 897$m^2$. In case of flowed sites, the average slope degree, flow length, the area of drainage basin and confluence order is $27.0^{\circ}$, 175m, 2,500$m^2$ and 1, respectively. In sediment sites, the average slope, flow length, the area of drainage basin and confluence order is $12.5^{\circ}$, 2,50m, 25,000$m^2$ and 4, respectively. Also the forest soil sediment disasters were occurred most of collapsed sites in the afforest land after felling and igneous rocks composed of granite.

Palaeomagnetic Study of Sedimentary and Igneous Rocks in the Yangsan Strike-slip Fault Area, SE Korea (양산단층지역에 분포하는 퇴적암 및 화성암류에 대한 고자기 연구)

  • Kang, Hee-Cheol;Kim, In-Soo;Son, Moon;Jung, Hyun-Jung
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.753-765
    • /
    • 1996
  • It is a well known fact that the remanent magnetization direction of the Tertiary rocks is deflected significantly clockwise (about $50^{\circ}$) in the Tertiary basins of the southeastern part of Korean peninsula. This fact has been interpreted as an evidence of north-south spreading of the East Sea (Sea of Japan) and dextral strike-slip motion of the Yangsan fault. As deflection (rotation) of remanent magnetizations is frequently reported from various regions of the world in the vicinities of strike-slip fault, such phenomena are to be expected in the Yangsan fault region also. It was the purpose of this study to clarify whether such premise is right or not. A total of 445 independently oriented core samples were collected from Cretaceous rocks of various lithology (sedimentary rocks, andesites and I-type granites) in the Yangsan fault area. In spite of through AF and thermal demagnetization experiments, no sign of remanent magnetization deflection was found. Instead, palaeomagnetic poles calculated from formation-mean ChRM directions are very similar to those of contemporary (Barremian, and late Cretaceous-Tertiary) sedimentary and plutonic rocks in the other parts of $Ky{\check{o}}ngsang$ basin as well as those of China. Therefore, possibility of tilting of granite plutons and horizontal block rotation of study area is excluded. It is also concluded that the Yangsan fault did not take any significant role in the Cenozoic tectonic evolution of southeast Korea and the East Sea region. The boundary between rotated and unrotated region of remanent magnetization is not the Yangsan fault line, but must lie further east of it.

  • PDF

The Stratigraphy and Geologic Structure of the Metamorphic Complex in the Northwestern Area of the Kyonggi Massif (경기육괴서북부(京畿陸塊西北部)의 변성암복합체(變成岩複合體)의 층서(層序)와 지질구조(地質構造))

  • Kim, Ok Joon
    • Economic and Environmental Geology
    • /
    • v.6 no.4
    • /
    • pp.201-216
    • /
    • 1973
  • Being believed thus far to be distributed in the wide areas in the vicinity of Seoul, the capital city of Korea, the Yonchon System in its type locality in Yonchon-gun from which the name derived was never previously traced down or correlated to the Precambrian metamorphic complex in Seoul area where the present study was carried out. Due to in accessibility to Yonchon area, the writer also could not trace the system down to the area studied so as to correlate them. The present study endeavored to differentiate general stratigraphy and interprete the structure of the metamorphic complex in the area. In spite of the complexity of structure and rapid changes in lithofacies of the complex, it was succeeded to find out the key bed by which the stratigraphy and structure of the area could be straightened out. The keybeds were the Buchon limestone bed in the western parts of the area; Daisongri quartzite bed cropped out in the southeastern area; Jangrak quartzite bed scattered in the several localities in the northwest, southwest, and eastern parts of the area; and Earn quartzite bed isolated in the eastern part of the area. These keybeds together with the broad regional structure made it possible to differentiated the Precambrian rocks in ascending order into the Kyonggi metamorphic complex, Jangrak group and Chunsung group which are in clinounconformable relation, and the first complex were again separated in ascending order into Buchon, Sihung, and Yangpyong metermorphic groups. Althcugh it has being vaguely called as the Yonchon system thus far, the Kyonggi metamorphic complex have never been studied before. The complex might, however, belong to early to early-middle Precambrian age. The Jangrak and Chunsung group were correlated to the Sangwon system in North Korea by the writer (1972), but it became apparent that the rocks of the groups have different lithology and highly metamorphosd than those of the Sangwon system which has thick sequence of limestone and slightly metamorphosed. Being deposited in the margin of the basin, it is natural that the groups poccess terrestrial sediments rather than limestone, yet no explanation is at hand as to what was the cause of bringing such difference in grade of metamorphism. Thus the writer attempted to correlate the both groups to those of pre-Sangwon and post-Yonchon which might be middle to early-late Precambrian time. Judging from difference in grade of deformation and unconformity between the Kyonggi metamorphic complex, Jangrak group, and Chunsung group, three stages of orogeny were established: the Kyonggi, Jangrak orogenies, and Chunsung disturbance toward younger age. It is rather astonishing to point out that the structure of these Precambrian formations. was not effected by Daebo orogeny of Jurassic age. The post-tectonic block faulting was accompanied by these orogenies, and in consequence NNE and N-S trending faults were originated. These faulting were intermittented and repeated until Daebo orogeny at which granites intruded along these faults. The manifestation of alignment of these faults is indicated by the parallel and straight linear development of valleys and streams in the Kyonggi Massifland.

  • PDF