• Title/Summary/Keyword: source voltage unbalance

Search Result 58, Processing Time 0.027 seconds

Integrative Control of Series Active Power Filters for Source Voltage Unbalance Compensation and Power Factor Correction (전원 불평형과 역률을 보상하는 직렬형 능동전력필터의 통합적 제어)

  • Jang, Jeong-Ik;Seok, Jul-Ki;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.5
    • /
    • pp.258-264
    • /
    • 2006
  • This paper presents an integrative control scheme for series-type active power filters combined with shunt passive filters not only to compensate for the source voltage unbalance and current harmonics but also to correct the power factor. To reduce the power capacity of the active filters, passive filters are connected in parallel. Diode rectifiers are replaced by the PWM converters in order to feed the real power back to the source. Power factor control is performed by changing the phase of the load voltage so that the phase of the source current coincides with that of the source voltage. The resultant voltage reference is the addition of the voltage component compensating for the source voltage unbalance and harmonic currents and the voltage component correcting the power factor. The validity of the proposed algorithm has been verified by experimental results.

Compensation of Source Voltage Unbalance and Current Harmonics in Series Active and Shunt Passive Power Filters

  • Lee G-Myoung;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.586-590
    • /
    • 2001
  • In this paper, a novel control scheme compensating source voltage unbalance and harmonic currents for hybrid active power filters is proposed, where no low/high-pass filters are used in compensation voltage composition. The phase angle and compensation voltages for source harmonic current and unbalanced voltage components are derived from the positive sequence component of the unbalanced voltage set, which is simply obtained by using digital all-pass filters. Since a balanced set of the source voltage obtained by scaling the positive sequence components is used as reference values for source current and load voltage, it is possible to eliminate the necessity of low/high-pass filters in the reference generation. Therefore the control algorithm is much simpler and gives more stable performance than the conventional method. In addition, the source harmonic current is eliminated by compensating for the harmonic voltage of the load side added to feedback control of the fundamental component.

  • PDF

3-Phase Hybrid Series Active Power Filter with Instantaneous Voltage Fluctuations Compensation (순간전압변동 보상 기능을 갖는 3상 하이브리드형 직렬 능동전력필터)

  • 한석우;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.544-551
    • /
    • 2000
  • In this paper, 3-phase hybrid series active power filter for compensate current harmonics, voltage drop and unbalanced voltage in the network presented. The proposed system is implemented with a space vector modulation voltage source inverter and a high pass filter connected in parallel to the power system. Here the load is six-pulses thyristor rectifier. The phase angle detected in order to generation reference voltage at load terminal is synchronized with the positive sequence component of the unbalanced source by using symmetrical component transformation. The proposed system has an function harmonic isolation between source and load, voltage regulation, and unbalance compensation. Therefore, what the power system is improved quality, the source current is maintained as a nearly sinusoidal waveform and the load voltage is regulated with a rated voltage regardless of the source variation condition. To verify the validity of the proposed compensating system, the computer simulation and experiment are carried out.

  • PDF

Current Control of Three-Phase PWM Converters under Unbalanced and Distorted Source Voltage (전원전압의 불평형 및 왜곡시 3상 PWM 컨버터의 전류제어)

  • Jang, Jeong-Ik;Kim, Heung-Geun;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.27-36
    • /
    • 2007
  • This paper proposes a current control scheme of the PWM converters under nonideal source voltage conditions such as unbalance and distortion. For the distorted source voltage, the harmonic current controllers are introduced to the conventional current controller. These control loops can eliminate the 5th and 7th order harmonics which are hardly to be done by using filters. For the unbalanced source voltage, a negative sequence current controller is introduced either to reduce the DC-link voltage ripples or to eliminate the source current unbalance. Experimental results show the validity of the proposed control scheme.

Series Active Power Filters for Source Voltage Unbalance Compensation and Power Factor Correction (전원 불평형과 역률을 보상하는 직렬형 능동전력필터)

  • Jang, Jeong-Ik;Lee, Dong-Choon;Seok, Jul-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.498-500
    • /
    • 2005
  • This paper presents a unified control scheme for series-type active power filters combined with shunt passive filters for the source voltage unbalance compensation and the power factor correction simultaneously. The power factor correction is achieved by controlling the amplitude of reactive power current in a series filter as zero in a synchronously rotating reference frame. The proposed algorithm successfully compensates the source voltage unbalance and the power factor. The validity of the proposed scheme has been verified by simulation for a 3-kVA hybrid active power filter system.

  • PDF

Series-Active and Shunt-Pasive Type Power Filter Compensating Harmonic Currents and Unbalanced Voltages of Source (직렬형 능동필터와 수동형 병렬필터를 이용한 전원불평형 및 고조파 전류 보상)

  • Lee G-Myoung;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.565-568
    • /
    • 2001
  • A novel control scheme compensating for source voltage unbalance and harmonic current for series active power filters is proposed, where the references for voltage unbalance and current harmonic and phase angle is derived from the positive sequence component of the source voltage obtained simply through digital all-pass filters, which makes the whole control algorithm simpler than other methods using p-q theory. In addition, the harmonic component of source current is compensated by harmonic component of load voltage and therefore fundamental component of source current is considered as separated terms for the control issue. The validity of the proposed scheme has been verified by experimental results.

  • PDF

Analysis on the Operation Characteristics of Induction Motor Operated by Unbalanced Voltage with Harmonics Components (고조파 성분이 포함된 전압 불평형 운전시 유도전동기의 동작 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.3
    • /
    • pp.134-140
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are usually balanced and connected to three power systems. However, in the user power distribution systems, partial loads are single & three phase and unbalanced, generating voltage unbalance by the impedance mismatching. Voltage unbalance has detrimental effects on three-phase induction motors, including over heating, line-current unbalance, derating, torque pulsation, low efficiency, etc. This paper presents a scheme on operation states of a three-phase induction motor under the unbalanced voltages with harmonics components. Three-phase voltages applied to the stator winding of the studied induction motor are controlled by respectively adjusting not only fundamental but also harmonics components. Harmonic components at the voltage unbalanced factor(VUF) of the three-phase source voltages can then be examined the different values of VUF on machine's operation characteristics.

Analysis on the Operation Characteristics of Induction Motor Operated by Asymmetric Unbalanced Voltage (비대칭 불평형 전압 운전시 유도전동기의 동작 특성 해석)

  • Kim, Jong-Gyeum;Sohn, Hong-Kwan;Jeong, Jong-Ho;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.53 no.2
    • /
    • pp.58-64
    • /
    • 2004
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating voltage unbalance. Voltage unbalance is a condition in a polyphase system in which the rms values of the line-to-line voltages or the phase angles between consecutive line-to-line voltages, are not all equal. Slight voltage unbalance generates a disproportionately high current unbalance at the motor stator winding. This paper presents a scheme on operation states of a three-phase induction motor under unbalanced voltages. The three-phase voltages applied to the stator winding of the studied induction motor are controlled by respectively adjusting the magnitude and phase angle of each phase. The voltage unbalanced factor(VUF) of the three-phase source voltages can then be varied to examine the different values of VUF on machine's operation characteristics.

Control of DC-side Voltage Unbalance among Phases in Multi-level H-Bridge STATCOM with Unbalanced Load (불평형부하를 가지는 다단 H-bridge STATCOM에서 상간 직류전압 불평형의 제어)

  • Kwon, Byung-Ki;Jung, Seung-Ki;Kim, Tae-Hyeong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.332-341
    • /
    • 2014
  • A cascaded H-bridge multi-level STATCOM(STATic synchronous COMpensator), which is composed of many cell inverters with independent dc-sources, generates inevitably dc-side voltage unbalance among phases when it compensates unbalanced load. It comes from the difference of flowing active power in each phase when this compensator makes negative-sequence current to eliminate the unbalance of source-side current. However, this unbalance can be controlled by injecting zero-sequence current which is decoupled with grid currents, so the compensator can work well during this balancing process. Both a feedback control algorithm, which produces zero-sequence current proportional to dc-side voltage unbalance within each phase, and a feedforward control algorithm, which makes zero-sequence current directly from the compensator's negative-sequence current, were proposed. The dc-side voltage of each phase can be controlled stably by these proposed algorithms in both steady-state and transient, so the compensator can have fast response to satisfy control performance under rapid changing load. These balancing controllers were implemented and verified via simulation and experiment.

Active Power Filter Compensating for Source Voltage Unbalance/Current Harmonics and Power Factor Correction (전원 전압의 불평형과 고조파 전류 보상 및 역률 개선 기능을 가지는 능동전력 필터)

  • Lee Jong-Kun;Seok Jul-Ki;Lee Dong-Choon
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.787-790
    • /
    • 2004
  • In this paper, a novel control scheme compensating for source voltage unbalance and current harmonics and power factor correction in unified active power filter systems combined with shunt passive filters is proposed, where no low/high-pass filter are used in deriving the reference voltage for compensation. Using digital all-pass filters, the phase angle and the reference voltages compensating for harmonic current and unbalanced voltage are derived from the positive sequence component of the unbalanced voltage. The amplitude of d-axis current in a series filter is controlled as zero for power factor correction. The validity of the proposed control scheme has been verified by experimental results.

  • PDF