• Title/Summary/Keyword: source modeling

Search Result 1,171, Processing Time 0.025 seconds

Source Apportionment of PM2.5 in Gyeongsan Using the PMF Model (PMF 모델을 이용한 경산지역 PM2.5의 오염원 기여도 추정)

  • Jeong, YeongJin;Hwang, InJo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.31 no.6
    • /
    • pp.508-519
    • /
    • 2015
  • The objective of this study was to quantitatively estimate $PM_{2.5}$ source contribution in Gyeongsan. Ambient $PM_{2.5}$ samples have been collected on zefluor, quartz and nylasorb filter by $PM_{2.5}$ samplers of cyclone method from September 2010 to December 2012. Collected samples were analyzed for determining 17 inorganic elements, 8 ions, and 8 carbon components after pretreatment. Based on these chemical information, the PMF model was applied to estimate the quantitative contribution of air pollution sources. The results of the PMF modeling showed that the sources were apportioned by biomass burning source (15.5%), secondary sulfate source (16.0%), industry source (10.4%), soil source (7.0%), gasoline source (9.1%), incinerator source (10.4%), diesel emission source (11.0%), and secondary nitrate source (20.6%), respectively. To analyze local source impacts from various wind directions, the CPF analysis were performed using source contribution results with the wind direction values measured at the site.

Transient thermo-mechanical response of a functionally graded beam under the effect of a moving heat source

  • Al-Huniti, Naser S.;Alahmad, Sami T.
    • Advances in materials Research
    • /
    • v.6 no.1
    • /
    • pp.27-43
    • /
    • 2017
  • The transient thermo-mechanical behavior of a simply-supported beam made of a functionally graded material (FGM) under the effect of a moving heat source is investigated. The FGM consists of a ceramic part (on the top), which is the hot side of the beam as the heat source motion takes place along this side, and a metal part (in the bottom), which is considered the cold side. Grading is in the transverse direction, with the properties being temperature-dependent. The main steps of the thermo-elastic modeling included deriving the partial differential equations for the temperatures and deflections in time and space, transforming them into ordinary differential equations using Laplace transformation, and finally using the inverse Laplace transformation to find the solutions. The effects of different parameters on the thermo-mechanical behavior of the beam are investigated, such as the convection coefficient and the heat source intensity and speed. The results show that temperatures, and hence the deflections and stresses increase with less heat convection from the beam surface, higher heat source intensity and low speeds.

Estimation of Source Contribution for PM10 by Chemical Mass Balance(CMB) in Busan

  • Jeon, Byung-Il;Lee, Young-Mi
    • Journal of Environmental Science International
    • /
    • v.17 no.4
    • /
    • pp.359-364
    • /
    • 2008
  • PM10 samples were collected from July 2007 to Oct. 2007 at Gwaebopdong(inland area) and Dongsamdong(coastal area), in Busan. This paper investigates the contribution of emission sources to PM10 mass in Busan. Source apportionment results derived from the chemical mass balance(CMB) method. A source profiles applied in this study is organized to minimize the collinearity among sources type via statistical method. Source profiles applied in this study utilized a measured value of fine particle directly sampled from metropolitan area such as Seoul and Incheon, After a CMB modeling, sulfate and nitrate related sources among those contributing to PM10 in Busan showed high contribution by 36.53% in Gwaebopdong and 42.02% in Dongsamdong.

Heat Source Modeling of Laser Keyhole Welding: Part 1-Bead Welding (레이저 키홀 용접의 열원 모델링: Part 1-비드 용접)

  • Lee Jae-Young;Lee Won-Beom;Yoo Choong-Don
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.48-54
    • /
    • 2005
  • Laser keyhole welding is investigated using a three-dimensional Gaussian heat source, and the heat source parameters such as the keyhole depth, welding efficiency and power density distribution factor are determined in a systematic way. For partial penetration, the keyhole depth is same as the penetration and is predicted using the experimental data. The welding efficiency is calculated using the ray-tracing method and the power density distribution factor is determined from the bead shape. Full penetration is classified into the transition, normal and excessive modes depending on the degree of keyhole opening. Thermal analysis of the bead-on-plate welds is conducted using the Gaussian heat source, and the calculated weld geometries show reasonably good agreements with the experimental results.

Estimation of Distributed Signal's Direction of Arrival Using Advanced ESPRIT Algorithm (개선된 ESPRIT 알고리즘을 이용한 퍼진 신호의 신호도착방향 추정)

  • Chung, Sung-Hoon;Lee, Dong-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.703-705
    • /
    • 1999
  • In this paper, we introduce the direction of arrival(DOA) estimation of distributed signal based on the improved ESPRIT algorithm. Most research on the estimation of DOA has been performed based on the assumption that the signal sources are point sources. However, we consider a two-dimensional distributed signal source model using improved ESPRIT algorithm. In the distributed signal source model, a source is represented by two parameters, the azimuth angle and elevation angle. We address the estimation of the elevation and azimuth angles of distributed sources based on the parametric source modeling in the three-dimensional space with two uniform linear arrays. The array output vector is obtained by integrating a steering vector over all direction of arrival with the weighting of a distributed source density function. We also develop an efficient estimation procedures that can reduce the computational complexity. Some examples are shown to demonstrate explicity the estimation procedures under the distributed signal source model.

  • PDF

Noise-source Analysis of Tactical Vehicle Using Partial Coherence Function (부분기여도함수를 이용한 전술차량 소음원 분석)

  • Park, Sungho;Lee, Kyunghyun;Han, HyungSuk;Jeon, Soohong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.774-780
    • /
    • 2016
  • In this paper noise source and transfer path of tactical vehicle are analyzed with partial coherence function and spectrum analysis. Engine, transmission, structure panel and aerodynamic are main source of cabin noise. To reduce cabin noise, identifying transfer path of sources and analyzing their contribution is important. With modeling of transfer path and partial coherence function, transfer path and principal noise source can be identified. Engine/transmission and structural resonance are principal source of low frequency noise and by adding stiffener and sound absorbing material, resonance of vibration and inflow air problem can be solved.

Low polygon game character modeling and Character Primitives manufacture (로우폴리곤 게임 캐릭터 모델링 및 Character Primitives 제작)

  • Kang, Sung-Jung;Kim, Sang-Jin;Lee, Seung-Hyun
    • Journal of the Korea Computer Industry Society
    • /
    • v.7 no.5
    • /
    • pp.573-582
    • /
    • 2006
  • The game is in progress according to the game story with the text, graphic, animation, motion picture, music, etc. Also the result of the game varies depending on the strategy and tactics of the player. For the development of the game, this paper describes the task of the game planner, game programmer, and game graphic designer. Game graphic designers are classified into 4 parts such as the art director, original picture designer, 2D designer, and 3D designer. Among these, the 3D designer makes the 3D game characters with the use of 3D tools. This paper presents the method that 3D designers and beginners can develop 3D characters easily and quickly, Also, this paper shows the method for making preparations of SourceModel which includes 150 polygons. The SourceModel is made up of between five life size and eight life size. In addition, Character Primitives Interface is made to use SourceModel in MaxScript. Accordingly 3D designers have the free use of SourceModel and they will be able to save time.

  • PDF

Korea Emissions Inventory Processing Using the US EPA's SMOKE System

  • Kim, Soon-Tae;Moon, Nan-Kyoung;Byun, Dae-Won W.
    • Asian Journal of Atmospheric Environment
    • /
    • v.2 no.1
    • /
    • pp.34-46
    • /
    • 2008
  • Emissions inputs for use in air quality modeling of Korea were generated with the emissions inventory data from the National Institute of Environmental Research (NIER), maintained under the Clean Air Policy Support System (CAPSS) database. Source Classification Codes (SCC) in the Korea emissions inventory were adapted to use with the U.S. EPA's Sparse Matrix Operator Kernel Emissions (SMOKE) by finding the best-matching SMOKE default SCCs for the chemical speciation and temporal allocation. A set of 19 surrogate spatial allocation factors for South Korea were developed utilizing the Multi-scale Integrated Modeling System (MIMS) Spatial Allocator and Korean GIS databases. The mobile and area source emissions data, after temporal allocation, show typical sinusoidal diurnal variations with high peaks during daytime, while point source emissions show weak diurnal variations. The model-ready emissions are speciated for the carbon bond version 4 (CB-4) chemical mechanism. Volatile organic carbon (VOC) emissions from painting related industries in area source category significantly contribute to TOL (Toluene) and XYL (Xylene) emissions. ETH (Ethylene) emissions are largely contributed from point industrial incineration facilities and various mobile sources. On the other hand, a large portion of OLE (Olefin) emissions are speciated from mobile sources in addition to those contributed by the polypropylene industry in point source. It was found that FORM (Formaldehyde) is mostly emitted from petroleum industry and heavy duty diesel vehicles. Chemical speciation of PM2.5 emissions shows that PEC (primary fine elemental carbon) and POA (primary fine organic aerosol) are the most abundant species from diesel and gasoline vehicles. To reduce uncertainties in processing the Korea emission inventory due to the mapping of Korean SCCs to those of U.S., it would be practical to develop and use domestic source profiles for the top 10 SCCs for area and point sources and top 5 SCCs for on-road mobile sources when VOC emissions from the sources are more than 90% of the total.

A Study on Conversion Between UML and Source Code Based on RTT(Round-Trip Translator) (RTT(Round-Trip Translator) 기반의 UML과 소스코드 변환에 대한 연구)

  • Kim, Ji Yong;Cho, Han Joo;Kim, Young Jong
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.9
    • /
    • pp.349-354
    • /
    • 2019
  • s programming education becomes more important in recent years, it is necessary to learn how the source code written by students reflects Object-Oriented(OO) concepts. We present a tool called the Round-Trip Translator(RTT) that transforms the Unified Modeling Language(UML) class diagram and Java source code to provide a web-based environment that provides real-time synchronization of UML and source code. RTT was created by improving existing RTE and is a tool for students who are learning OO concepts to understand how their UML or source code reflects the concepts that user intended. This study compares the efficiency and user- friendliness of RTT with the existing Round-Trip Engineering-based tools. The results show that students have improved understanding of OO concepts through UML and source code translation by using the RTT. We also found out that students were satisfied with the use of the RTT, which provides more efficient and convenient user interface than the existing tools.

Development of a Beam Source Modeling Approach to Calculate Head Scatter Factors for a 6 MV Unflattened Photon Beam

  • Park, So-Yeon;Choi, Noorie;Jang, Na Young
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.137-144
    • /
    • 2021
  • Purpose: This study aimed to investigate the accuracy of head scatter factor (Sc) by applying a developed multi-leaf collimator (MLC) scatter source model for an unflattened photon beam. Methods: Sets of Sc values were measured for various jaw-defined square and rectangular fields and MLC-defined square fields for developing dual-source model (DSM) and MLC scatter model. A 6 MV unflattened photon beam has been used. Measurements were performed using a 0.125 cm3 cylindrical ionization chamber and a mini phantom. Then, the parameters of both models have been optimized, and Sc has been calculated. The DSM and MLC scatter models have been verified by comparing the calculated values to the three Sc set measurement values of the jaw-defined field and the two Sc set measurement values of MLC-defined fields used in the existing modeling, respectively. Results: For jaw-defined fields, the calculated Sc using the DSM was consistent with the measured Sc value. This demonstrates that the DSM was properly optimized and modeled for the measured values. For the MLC-defined fields, the accuracy between the calculated and measured Sc values with the addition of the MLC scatter source appeared to be high, but the only use of the DSM resulted in a significantly bigger differences. Conclusions: Both the DSM and MLC models could also be applied to an unflattened beam. When considering scattered radiation from the MLC by adding an MLC scatter source model, it showed a higher degree of agreement with the actual measured Sc value than when using only DSM in the same way as in previous studies.