Browse > Article
http://dx.doi.org/10.5572/KOSAE.2015.31.6.508

Source Apportionment of PM2.5 in Gyeongsan Using the PMF Model  

Jeong, YeongJin (Department of Environmental Engineering, Daegu University)
Hwang, InJo (Department of Environmental Engineering, Daegu University)
Publication Information
Journal of Korean Society for Atmospheric Environment / v.31, no.6, 2015 , pp. 508-519 More about this Journal
Abstract
The objective of this study was to quantitatively estimate $PM_{2.5}$ source contribution in Gyeongsan. Ambient $PM_{2.5}$ samples have been collected on zefluor, quartz and nylasorb filter by $PM_{2.5}$ samplers of cyclone method from September 2010 to December 2012. Collected samples were analyzed for determining 17 inorganic elements, 8 ions, and 8 carbon components after pretreatment. Based on these chemical information, the PMF model was applied to estimate the quantitative contribution of air pollution sources. The results of the PMF modeling showed that the sources were apportioned by biomass burning source (15.5%), secondary sulfate source (16.0%), industry source (10.4%), soil source (7.0%), gasoline source (9.1%), incinerator source (10.4%), diesel emission source (11.0%), and secondary nitrate source (20.6%), respectively. To analyze local source impacts from various wind directions, the CPF analysis were performed using source contribution results with the wind direction values measured at the site.
Keywords
$PM_{2.5}$; PMF; CPF; Mass contribution; Receptor model;
Citations & Related Records
Times Cited By KSCI : 11  (Citation Analysis)
연도 인용수 순위
1 Belis, C.A., F. Karagulian, B.R. Larsen, and P.K. Hopke (2013) Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe, Atmos. Environ., 69, 94-108.   DOI
2 Chow, J.C. (1995) Measurement methods to determine compliance with ambient air quality standards for suspended particles, J. Air Waste Manage. Assoc., 45(5), 320-382.   DOI
3 Dockery, D.W. and P.H. Stone (2007) Cardiovascular risks from fine particulate air pollution, New England Journal of Medicine, 356(5), 511-513.   DOI
4 Harrison, R.M., D.C.S. Beddows, L. Hu, and J. Yin (2012) Comparison of methods for evaluation of wood smoke and estimation of UK ambient concentrations, Atmos. Chem. Phys., 12(17), 8271-8283.   DOI
5 Huntzicker, J.J., R.L. Johnson, J.J. Shah, and R.A. Cary (1982) Analysis of organic and elemental carbon in ambient aerosols by a thermal optical method, In Particulate Carbon (pp. 79-88). Springer US.
6 Hwang, I.J. (2010) Source Identification and Estimation of Source Apportionment of Ambient $PM_{2.5}$ at Western National Park Site in USA, J. Korean Soc. Atmos. Environ., 26(1), 21-33. (in Korean with English abstract)   DOI
7 Hwang, I.J. and D.S. Kim (2003) Source Identification of AmbientPM-10 Using the PMF model, J. Korean Soc. Atmos. Environ., 19(6), 701-717. (in Korean with English abstract)
8 Hwang, I.J. and D.S. Kim (2013) Research Trends of Receptor Models in Korea and Foreign Countries and Improvement Directions for Air Quality Management, J. Korean Soc. Atmos. Environ., 29(4), 459-476. (in Korean with English abstract)   DOI
9 Hwang, I.J. and P.K. Hopke (2007) Estimation of source apportionment and potential source locations of $PM_{2.5}$ at a west coastal IMPROVE site, Atmos. Environ., 41, 506-518.   DOI
10 Hwang, I.J., D.S. Kim, and P.K. Hopke (2008a) Estimation of Source Apportionment of Ambient $PM_{2.5}$ at Western Coastal IMPROVE Site in USA, J. Korean Soc. Atmos. Environ., 24(1), 30-42. (in Korean with English abstract)   DOI
11 Hwang, I.J., P.K. Hopke, and J.P. Pinto (2008b) Source apportionment and spatial distributions of coarse particles during the Regional Air Pollution Study, Environ. Sci. Technol., 42, 3524-3530.   DOI
12 Hwang, I.J., Y.H. Cho, W.G. Choi, H.M. Lee, and T.O. Kim (2008c) Quantitative estimation of $PM_{10}$ source contribution in Gumi city by the positive matrix factorization model, J. Korean Soc. Atmos. Environ., 24(1), 100-107. (in Korean with English abstract)   DOI
13 Jeon, J.M., D. Hur, and D.S. Kim (2005) Development of source profiles and estimation of source contribution for VOCs by the chemical mass balance model in the Yeosu Petrochemical Industrial Complex, J. Korean Soc. Atmos. Environ., 21(1), 83-96. (in Korean with English abstract)
14 Kim, D.S. (2013) Air Pollution History, Regulatory Changes, and Remedial measures of the Current Regulatory Regimes in Korea, J. Korean Soc. Atmos. Environ., 29(4), 353-368. (in Korean with English abstract)   DOI
15 Kim, E. and P.K. Hopke (2004) Source apportionment of fine particles in Washington, DC, utilizing temperature-resolved carbon fractions, J. Air Waste Manage. Assoc., 54(7), 773-785.   DOI
16 Lee, H.S., C.M. Kang, B.W. Kang, and S.K. Lee (2005) A study on the $PM_{2.5}$ source characteristics affecting the Seoul area using a chemical mass balance receptor model, J. Korean Soc. Atmos. Environ., 21(3), 329-341. (in Korean with English abstract)
17 Oh, M.S., T.J. Lee, and D.S. Kim (2011) Quantitative source apportionment of size-segregated particulate matter at urbanized local site in Korea, Aerosol and Air Quality Research, 11, 247-264.   DOI
18 Lee, H.W., T.J. Lee, S.S. Yang, and D.S. Kim (2008) Identification of Atmospheric $PM_{10}$ Sources and Estimating Their Contributions to the Yongin-Suwon Bordering Aera by Using PMF, J. Korean Soc. Atmos. Environ., 24(4), 439-454. (in Korean with English abstract)   DOI
19 Lee, T.J., J.B. Hur, S.M. Yi, S.D. Kim, and D.S. Kim (2009) Estimation of $PM_{10}$ source contributions on three cities in the Metropolitan area by using PMF model, J. Korean Soc. Atmos. Environ., 25(4), 275-288. (in Korean with English abstract)   DOI
20 Moon, K.J., J.S. Han, B.J. Kong, I.R. Jung, S.S. Cliff, T.A. Cahill, and K.D. Perry (2006) Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan, Jeju Island during ACE-Asia, J. Korean Soc. Atmos. Environ., 22(5), 590-603. (in Korean with English abstract)
21 Paatero, P. (1997) Least squares formulation of robust nonnegative factor analysis, Chemom. Intell. Lab. Syst., 37(1), 23-35.   DOI
22 Polissar, A.V., P.K. Hopke, P. Paatero, W.C. Malm, and J.F. Sisler (1998) Atmospheric aerosol over Alaska: 2. Elemental composition and sources, J. Geophysical Research: Atmospheres (1984-2012), 103(D15), 19045-19057.   DOI
23 Sahu, M., S. Hu, P.H. Ryan, G.L. Masters, S.A. Grinshpun, J.C. Chow, and P. Biswas (2011) Chemical compositions and source identification of $PM_{2.5}$ aerosols for estimation of a diesel source surrogate, Science Total Environ., 409(13), 2642-2651.   DOI
24 Shin, S.A., J.S. Han, and S.D. Kim (2006) Source apportionment and the origin of Asian dust observed in Korea by receptor modeling (CMB), J. Korean Soc. Atmos. Environ., 22(2), 157-166. (in Korean with English abstract)
25 Yi, S.M. and I.J. Hwang (2014) Source Identification and Estimation of Source Apportionment for Ambient $PM_{10}$ in Seoul, Korea, Asian J. Atmos. Environ., 8(3), 115-125.   DOI
26 Taiwo, A.M., R.M. Harrison, and Z. Shi (2014) A review of receptor modelling of industrially emitted particulate matter, Atmos. Environ., 97, 109-120.   DOI
27 Wang, Y., P.K. Hopke, X. Xia, O.V. Rattigan, D.C. Chalupa, and M.J. Utell (2012) Source apportionment of airborne particulate matter using inorganic and organic species as tracers, Atmos. Environ., 55, 525-532.   DOI
28 Watson, J.G., A.L.W. Chen, J.C. Chow, P. Doraiswamy, and D.H. Lowenthal (2008) Source apportionment: findings from the US supersites program, J. Air Waste Manage. Assoc., 58(2), 265-288.   DOI
29 Zhang, X., A. Hecobian, M. Zheng, N.H. Frank, and R.J. Weber (2010) Biomass burning impact on $PM_{2.5}$ over the southeastern US during 2007: integrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis, Atmos. Chem. Phys., 10(14), 6839-6853.   DOI
30 Zhao, W. and P.K. Hopke (2004) Source apportionment for ambient particles in the San Gorgonio wilderness, Atmos. Environ., 38(35), 5901-5910.   DOI