• Title/Summary/Keyword: source modeling

Search Result 1,171, Processing Time 0.028 seconds

Source & crustal propagation effects on T-wave envelopes

  • Yun, Suk-Young;Park, Min-Kyu;Lee, Won-Sang
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2010.10a
    • /
    • pp.27-27
    • /
    • 2010
  • There have been several studies about empirical relation between seismic source parameters(e.g., focal mechanisms, depths, magnitudes, etc.) and T-wave observation. In order to delineate the relation, numerical and theoretical approaches to figure out T-wave excitation mechanism are required. In an attempt to investigate source radiation and wave scattering effects in the oceanic crust on T-wave envelopes, we perform three-dimensional numerical modeling to synthesize T-wave envelopes. We first calculate seismic P- and SV-wave energy on the seafloor using the Direct Simulation Monte Carlo based on the Radiative Transfer Theory, which enables us to take into account both realistic seismic source parameters and wave scattering in heterogeneous media, and then estimate excited T-wave energy by normal mode computation. The numerical simulation has been carried out considering the following different conditions: source types (strike and normal faults), source depths (shallow and deep), and wave propagation through homogeneous and heterogeneous Earth media. From the results of numerical modeling, we confirmed that T-wave envelopes vary according to spatial seismic energy distributions on the seafloor for the various input parameters. Furthermore, the synthesized T-wave envelopes show directional patterns due to anisotropic source radiation, and the slope change of T-wave envelopes caused by focal depth. Seismic wave scattering in the oceanic crust is likely to control the shape of envelopes.

  • PDF

Cylindrical Silicon Nanowire Transistor Modeling Based on Adaptive Neuro-Fuzzy Inference System (ANFIS)

  • Rostamimonfared, Jalal;Talebbaigy, Abolfazl;Esmaeili, Teamour;Fazeli, Mehdi;Kazemzadeh, Atena
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1163-1168
    • /
    • 2013
  • In this paper, Adaptive Neuro-Fuzzy Inference System (ANFIS) is applied for modeling and simulation of DC characteristic of cylindrical Silicon Nanowire Transistor (SNWT). Device Geometry parameters, terminal voltages, temperature and output current were selected as the main factors of modeling. The results obtained are compared with numerical method and a good match has been observed between them, which represent accuracy of model. Finally, we imported the ANFIS model as a voltage controlled current source in a circuit simulator like HSPICE and simulated a SNWT inverter and common-source amplifier by this model.

Scalable HBT Modeling using Direct Extraction Method of Model Parameters (파라메터 직접 추출법을 이용한 스케일 가능한 HBT의 모델링)

  • Suh Youngsuk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.316-321
    • /
    • 2005
  • A new HBT current source model and the corresponding direct parameter extraction methods are presented. Exact analytical expressions for the current source model parameters are derived. This method is applied to scalable modeling of HBT, Some techniques to reduce redundancy of the parameters are introduced. The model based on this method can accurately predict the measured data for the change of ambient temperature, size, and bias.

Modeling and Dynamic Analysis of Microturbine and Fuel Cell Using EMTP (EMTP를 이용한 마이크로터빈과 연료전지의 모델링 및 동특성 해석)

  • Kwon, Kyung-Ha;Baek, Young-Sik;Jyung, Tae-Young
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1170-1171
    • /
    • 2008
  • Microsources supply high quality power from 1kW to a matter of MW with higher reliability and energy efficiency than the existing large power facilities. In this paper, we designed dynamic modeling of Microturbine and Fuel cell being worthy as a small distributed energy source. Using EMTP we designed the dynamic modeling and confirmed characteristics of steady-state and dynamic analysis. In this paper, we designed dynamic modeling of Microturbine and Fuel cell being worthy as a small distributed energy source and analyzed dynamic characteristics corresponding to load variation.

  • PDF

Application of chemical Mass Balance Model for the Source Apportionment of Polynuclear Aromatic Hydrocarbons in Urban Atmosphere (도시 대기오염물중 다환방향족 탄화수소의 배출원 규명을 위한 화학물질 수지모델의 적용)

  • 구자공;서영화
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.4
    • /
    • pp.229-239
    • /
    • 1992
  • A receptor model application was performed by using a chemical mass balance (CMB) model to identify and apportion the specific source of airborne organic pollutants, particularly polynuclear aromatic hydrocarbons (PAHs). Source profiles of PAHs produced from the combustion of fossil fuels for CMB modeling were prepared by measuring them in emission gases. The emission sources which were examineed for the development of PAH source profiles are a coal-fired furnace using Yontan, a bunker-C iol heating boiler, and gasoline-and diesel engine automobiles. The ambient concentrations of PAHs were determined at four sites in Daejon city in 1991 with a seasonal variation. Wintertime air samples contained more extractable organic matter than summertime samples. The results of CMB modeling were various depending on the sampling sites and seasons, but the emission from bunker-C oil heating boliers was the predominant factor to affect local air quality throughout the year.

  • PDF

GMM Based Voice Conversion Using Kernel PCA (Kernel PCA를 이용한 GMM 기반의 음성변환)

  • Han, Joon-Hee;Bae, Jae-Hyun;Oh, Yung-Hwan
    • MALSORI
    • /
    • no.67
    • /
    • pp.167-180
    • /
    • 2008
  • This paper describes a novel spectral envelope conversion method based on Gaussian mixture model (GMM). The core of this paper is rearranging source feature vectors in input space to the transformed feature vectors in feature space for the better modeling of GMM of source and target features. The quality of statistical modeling is dependent on the distribution and the dimension of data. The proposed method transforms both of the distribution and dimension of data and gives us the chance to model the same data with different configuration. Because the converted feature vectors should be on the input space, only source feature vectors are rearranged in the feature space and target feature vectors remain unchanged for the joint pdf of source and target features using KPCA. The experimental result shows that the proposed method outperforms the conventional GMM-based conversion method in various training environment.

  • PDF

The Development of Air Quality Model Considering Shipping Source in Pusan Region (선박배출 오염물질의 영향을 고려한 부산지역 대기질 모델의 개발)

  • 이화운;김유근;원경미
    • Journal of Environmental Science International
    • /
    • v.8 no.1
    • /
    • pp.135-144
    • /
    • 1999
  • Air quality modeling about coastal urban region such as Pusan shoud be consider shipping source emmited from ships anchoraging and running. It has been proved at our previous studies that the ratios of air pollutants emission amount in coastal area to inland are 12.2% for NO$_2$ and 11.7% for $SO_2$ and the air qualify of coastal urban area consierably counts on ships. Also the dispersion pattern of the all pollutants followed local circulation system in this region. Therefore this study has been developed air quality model which can describe the formation, transport, transformation and deposition processes of air pollutants considering shipping source. Currently, restriction for emission amount of ships does not exist, so our study will be useful to set the omission standard and for devising air quality policy in coastal urban region.

  • PDF

Three-dimensional Cross-hole EM Modeling using the Extended Born Approximation (확장 Born 근사에 의한 시추공간 3차원 전자탐사 모델링)

  • Lee, Seong-Kon;Kim, Hee-Joon;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.2
    • /
    • pp.86-95
    • /
    • 1999
  • This paper presents an efficient three-dimensional (3-D) modeling algorithm using the extended approximation to an electric field integral equation. Numerical evaluations of Green's tensor integral are performed in the spatial wavenumber domain. This approach makes it possible to reduce computing time, to handle smoothly varying conductivity model and to remove singularity problems encountered in the integration of Green's tensor at a source point. The responses obtained by 3-D modeling algorithm developed in this study are compared with those by the full integral equation for a thin-sheet EM scattering. The extensive analyses on the performance of modeling algorithm are made with the conductivity contrasts and source frequencies. These results show that the modeling algorithm are accurate up to the conductivity contrast of 1:16 and the frequency range of 100 Hz-100 kHz. The extended Born approximation, however, may produce inaccurate results for some source and model configurations in which the electric field is discontinuous across the conductivity boundary. We performed the modeling of a composite model of which conductivity varies continuously and this shows the modeling algorithm developed in this study is efficient for 3-D EM modeling. For a cross-hole source-receiver configuration a composite model of which conductivity varies continuously can be successfully simulated using this algorithm.

  • PDF

Fourier Modal Method for Optical Dipole Radiation in Photonic Structures

  • Park, Sungjae;Hahn, Joonku;Kim, Hwi
    • Current Optics and Photonics
    • /
    • v.5 no.6
    • /
    • pp.597-605
    • /
    • 2021
  • An extended Fourier modal method (FMM) for optical dipole radiation in three-dimensional photonic structures is proposed. The core elements of the proposed FMM are the stable bidirectional scattering-matrix algorithm for modeling internal optical emission, and a novel optical-dipole-source model that prevents numerical errors induced by the Gibbs phenomenon. Through the proposed scheme, the FMM is extended to model a wide range of source-embedded photonic structures.

Modeling and Analysis of Leakage Currents in PWM-VSI-Fed PMSM Drives for Air-Conditioners with High Accuracy and within a Wide Frequency Range

  • Sun, Kai;Lu, Yangjun;Xing, Yan;Huang, Lipei
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.970-981
    • /
    • 2016
  • Leakage currents occur in pulse-width-modulated voltage source inverter (PWM-VSI)-fed permanent magnet synchronous motor (PMSM) drives for air-conditioners, which seriously affect system safety and operation performance. High accuracy modeling and prediction of leakage currents are key issues for the design and implementation of air-conditioning products. In this study, the generation mechanism of leakage currents is discussed. A systematic modeling approach of leakage currents is proposed, including the modeling of leakage current sources and leakage current paths. By using the proposed approach, the complete model of leakage currents in PWM-VSI-fed PMSM drives for air-conditioners has been developed based on the extraction of all parameters. A comparison between the simulated leakage currents based on the developed model and measured leakage currents in the outdoor unit of an air-conditioning product is conducted. The comparison verifies the effectiveness of the proposed modeling approach, and the developed model exhibits high accuracy within a wide frequency range.