• Title/Summary/Keyword: source distribution method

Search Result 809, Processing Time 0.031 seconds

A Study on Free Surface Effect of 2-D Airfoils (2차원 익형의 자유수면 효과에 관한 연구)

  • Park, Il-Ryong;Jeon, Ho-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.75-82
    • /
    • 1995
  • The free surface effects on the aerodynamic performance of 2-D wings are investigated based on the potential flow approximation. The wing is represented b source and vortex distributions on the wing surface. The steady free surface effect is taken into account by source distribution on the free surface and the velocity potentials of air and water flows are obtained. Using three different techniques, namely, positive image method, inverse image method and source distribution method, numerical results are obtained for wave elevation, pressure distribution and lift coefficient with various foil sections. The wave elevation calculated by the inverse image method is shown to be very small even at higher speeds so that the free surface effect on the performance of wings is regraded negligible. However, the wave elevations by the positive image method and source distribution method are relatively high at higher speeds and accordingly the free surface effects on wings can not be neglected.

  • PDF

A study of Heat Transfer by the Finite Element Method - Around Square Heat Source - (유한요소법에 의한 열전달 연구 -4각열원 주위-)

  • 장재은
    • Journal of the Korean Society of Safety
    • /
    • v.13 no.1
    • /
    • pp.26-33
    • /
    • 1998
  • This paper subdivided the interior solid into triangular shape of equal size to calculate the temperature distribution around the square heat source of it, and compared calculated values with measured ones. The result obtained are as follows. 1) It was found that we can calculate the temperature distribution around the square heat source of interior solid by the variational method of the finite element method as the calculated values were almost accord with the measured ones. 2) The temperature distributed were higher when the distances between heat source were farther and lower when those nearer. 3) Vertical surface temperature distribution is remarkably efficient by thermal conductivities.

  • PDF

A Study on the Rectangular Distribution of far Field Sources in Equivalent Source Method (등가음원법에서의 직육면체형 원거리음원 배치에 관한 연구)

  • 백광현
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.40-46
    • /
    • 2004
  • The equivalent source method (ESM) uses two groups of equivalent source positions. One group includes the first order images of the sound source inside the enclosure. The positions of the other group are usually on a spherical surface some distance outside the enclosure. A proper selection of the positions for the far field sources could greatly improve the performance of the modeling accuracy and reduce the number of the sources to achieve the required accuracy. This study uses optimally distributed far field source positions on the surface of enlarged version of the rectangular enclosure instead of using typical spherical distribution. Simulations using various sizes of the box shaped distribution are executed and optimal positions are searched using an optimization technique from the larger number of candidate positions. The results of using these far field source positions are compared and analyzed.

Theoretical Temperature Analysis for 88316 Piping Weld (SS316강 배관 용접부에 대한 이론적 온도해석)

  • Kim, Jong-Sung;Lee, Seung-Gun;Jin, Tae-Eun;Kwon, Soon-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1623-1629
    • /
    • 2003
  • In this paper, the arc beam is considered as a moving disc heat source with a pseudo-Gaussian distribution of heat intensity. The solution for temperature distribution on welds is derived by using the image heat source method and the superposition method. It is general solution in that it can determine the temperature-rise distribution in and around the arc beam heat source, as well as the width and depth of the melt pool (MP) and the heat-affected zone (HAZ) in welding short lengths, where quasi-stationary conditions may not have been established. As a comparative study, the results of this analytical approach has been compared with that of the finite-element modeling. As a result, The theoretical analysis presented here has shown good consistency and is more time/cost-effective method compared with FEM.

Acceleration method of fission source convergence based on RMC code

  • Pan, Qingquan;Wang, Kan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1347-1354
    • /
    • 2020
  • To improve the efficiency of MC criticality calculation, an acceleration method of fission source convergence which gives an improved initial fission source is proposed. In this method, the MC global homogenization is carried out to obtain the macroscopic cross section of each material mesh, and then the nonlinear iterative solution of the SP3 equations is used to determine the fission source distribution. The calculated fission source is very close to the real fission source, which describes its space and energy distribution. This method is an automatic computation process and is tested by the C5G7 benchmark, the results show that this acceleration method is helpful to reduce the inactive cycles and overall running time.

An improved Rankine source panel method for three dimensional water wave problems

  • Feng, Aichun;You, Yunxiang;Cai, Huayang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.70-81
    • /
    • 2019
  • An improved three dimensional Rankine source method is developed to solve numerically water wave problems in time domain. The free surface and body surface are both represented by continuous panels rather than a discretization by isolated points. The integral of Rankine source 1/r on free surface panel is calculated analytically instead of numerical approximation. Due to the exact algorithm of Rankine source integral applied on the free surface and body surface, a space increment free surface source distribution method is developed and much smaller amount of source panels are required to cover the fluid domain surface than other numerical approximation methods. The proposed method shows a higher accuracy and efficiency compared to other numerical methods for various water wave problems.

Use of MAAP in Generating Accident Source Term Parameters

  • Kim, Jong-Wok;Yun, Joeng-Ik;Kang, Chang-Sun
    • Nuclear Engineering and Technology
    • /
    • v.30 no.3
    • /
    • pp.235-244
    • /
    • 1998
  • The parametric model method determines the accident source term which is Presented by a set of source term parameters. In this method, the cumulative distribution of each source term parameter should be derived for its uncertainty analysis. This paper introduces a method of generating the parameters in the form of cumulative distribution using MAAP version 4.0. In MAAP, there are model parameters which could incorporate uncertain physical and/or chemical phenomena. In general, the model parameters do not have a point value but a range. In this paper, considering that, the input values of model parameters influencing each parameter are sampled using LHS. Then, the computation results are shown in cumulative distribution form. For a case study, the CDFs of FCOR and WES of Kori Unit 1 are derived. The target scenarios for the computation are the ones whose initial events are large LOCA, small LOCA and transient, respectively. It is found that the computed CDF's in this study are consistent to those of NUREG-1150 and the use of MAAP is proven to be adequate in assessing the parameters of the severe accident source term.

  • PDF

Finite Element Analysis of the Eddy Currents Inside the Source Conductors (전류원 도체 내의 와전류 현상의 2차원 유한 요소 해석)

  • Kim, Hong-Kyu;Jung, Hyun-Kyo;Sim, Dong-Joon
    • Proceedings of the KIEE Conference
    • /
    • 1998.11a
    • /
    • pp.22-24
    • /
    • 1998
  • The current distribution in the source coil region is analyzed using the two dimensional finite element method. The variables in the FEM are the magnetic vector potentials and the source current density. The boundary condition for the source current density is that the total current is the sum of the eddy current and the source current and is known quantity from measurement. The simulation results are compared with the analytical solution. It is found that the method can analyze the current distribution in the source conductors very accurately.

  • PDF

Dose Distribution of $^{60}$ Co Source as Brachytherapy in Tissue (근접조사 치료에 사용되는 $^{60}$ Co source의 조직내에서 선량분포)

  • 유명진
    • Progress in Medical Physics
    • /
    • v.1 no.1
    • /
    • pp.85-90
    • /
    • 1990
  • Berger formulation was used to calculate the dose distribution of $^{60}$ Co source in tissue. $^{60}$ Co source was supposed as point source. The effect of the stainless-steel around the source was considered and Taylor Approximation Method was used for calculating exposure build-up factor. Calculated depth dose data was compared with measured data which was measured by the ionization chamber.

  • PDF

Research of Optical Design Method for Prism Luminaire (조명기구용 프리즘의 광학 설계법에 관한 연구)

  • Seok, Dae-Il;Lee, Chang-Mo;Kim, Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.6
    • /
    • pp.19-25
    • /
    • 2007
  • We studied prism design method for actual light source that have bulk in order to accomplish particular intensity distribution. When we know incidence angle and try to send ray to given direction, numerical formula that yields prism vertical angle, and then vertical angles were calculated sequentially. After analyzing problem that supposing to point light source, supplemented this and derived applicable prism design method on bulk light source. The intensity distribution and efficiency that came out by each design results were compared and analyzed, we got improved results through supplemented design method.