• Title/Summary/Keyword: sound wave

Search Result 572, Processing Time 0.026 seconds

Stress Wave Technique for Detecting Decay of Structural Members in Ancient Structures

  • Lee, Jun-Jae;Oh, Jung-Kwon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.43-50
    • /
    • 1999
  • The safety-evaluation of ancient wood structures has been executed with only visual inspection. The application of NDE(nondestructive evaluation) is required because the visual inspection has many restrictions. Among many NDE techniques, the stress wave technique was used in this research. This study focused on evaluating the extent of decay in members of ancient structures, using stress wave nondestructive technique. For application of stress wave technique to ancient structures, the threshold time which divides members into categories according to degree of decay should be determined in advance. Stress wave timer (Metriguard Model 239A) was used in this study, specimens used in this research were the members obtained from six ancient structures. All specimens were identified as Hard Pine(Pinus densiflora S. et Z. or Pinus thunbergii P.) by microscope. Each member was tested with stress wave passing radially through the pith. In this study, the stress wave time of $12{\mu}s$/cm could distinguish between sound and decayed specimens with accuracy of 77.5 percent. Also, decayed specimens could be separated into moderate and severe categories by stress wave time of $20{\mu}s$/cm. Among the three decay location groups (exterior, mixed, interior), the exterior group could be classified into sound, moderate and severe decay with the greatest accuracy. Stress wave transit time was not sensitive to small decay pockets located in interior of the member.

  • PDF

Interpretation of Ground Wave Using Ray Method in Pekeris Waveguide (Pekeris 도파관에서 음선 접근법을 이용한 지면파 해석)

  • Choi, Jee-Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.208-212
    • /
    • 2009
  • Ground wave is an acoustic wave propagating at a sediment sound speed in the case that sediment sound speed is constant with depth, which is explained by modal dispersion effects. In this paper, the ground wave in time domain is simulated using the ray-based approach, which is possible because the modal dispersion can be explained by the guiding of energy caused by reflection and refraction in the waveguide geometry. For a Pekeris waveguide, the ground wave can be interpreted as a sequence of head waves, called a head wave sequence [Choi and Dahl, J. Acoust. Soc. Am. 119, 3660-3668 (2006)]. The ground wave is simulated by convolution of the source signal with a channel impulse response of the head wave sequence, which is compared with simulated signals obtained via a Fourier synthesis of a complex parabolic equation (PE) field.

Measurement of Nonlinear Elastic Constants and Material Characterization by Using Nonlinear Elasto-acoustics (비선형 탄성-음향 효과를 이용한 비선형 탄성 계수의 계측과 금속재료의 특성평가)

  • ;;Sato, Takuso
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.1971-1979
    • /
    • 1993
  • In this paper, a new method to estimate stress status in metal nondestructively by using nonlinear dependency of sound speed on stress is proposed. For the purpose, equivalent nonlinear elastic constants up to fourth-order are introduced and a new characteristic parameter given as a function of these constants is presented. And a concrete system to measure the characteristic parameter is constructed by electromagnetic pumping wave and ultrasonic probing wave system. Some experimental results for Al alloy showed that the estimation of stress status in metal is possible by the proposed method.

A Unified Theory of Spatial Sound and Vibration Control with Multiple Sources (음향 및 진동장의 형상을 제어하는 다양한 방법)

  • Kim, Yang-Hann;Choi, Joung-Woo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.126-132
    • /
    • 2006
  • In this paper, we aim to control the sound and vibration spatially, so that a desired physical variable is enhanced within a zone we select. This is somewhat analogous to have manipulators that can draw wave shape in any place we want. Brightness and contrast control have shown that such a manipulation is possible by controlling multiple sources[J.-W. Choi and Y.-H. Kim, J. Acoust. Soc. Am. 111(4), 2002]. In particular, the acoustic brightness control seeks a way to increase loudness of sound over a chosen area, and the contrast control aims to enhance loudness difference between two neighboring regions. This enables us to manipulate spatial distribution of sound by making two different kinds of zone ? the bright and dark zone- at the same time. The primary focus of this study is to unit the theoretical formulation of the brightness and contrast control and to find a link between these methods, as well as its relation to other conventional techniques. It is also shown that we can generate various shape of wave field by transforming the domain we consider.

  • PDF

Experimental Study on Flow Noise Generated by Axi-symmetric Boundary Layer (II) - Forced Transition on an Axi-symmetric Nose and Radiated Sound - (축대칭 물체의 경계층 유동소음에 대한 실험적 연구(II) - 전두부 천이제어 및 방사소음 -)

  • Lee, Seung-Bae;Kim, Hooi-Joong;Kwon, O-Sup;Lee, Sang-Kwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1326-1334
    • /
    • 2000
  • The oscillatory excitation with a Strouhal number of 2.65 ncar the stagnation zone of hemispherical nose model was employed to control the laminar separation bubble and the transition to turbulence. The effects of oscillatory excitation upon the separation bubble and the transition were addressed in terms of kurtosis/skewness and time-frequency analyses. The measured noise spectrum of radiated sound from the turbulent boundary layer on the axi-symmetric infinite cylinder is compared with that by Sevik's wave-number white approximations. The noise sources in TBL on axi-symmetric cylinder and the caling of their far-field sound are also discussed.

A Separator system for underwater observing instrument (수중 관측 및 탐사장비 원격분리 시스템의 개발)

  • Kim, Young-Jin;Jeong, Han-Cheol;Huh, Kyung-Moo;Cho, Young-June
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.158-160
    • /
    • 2005
  • In order to successfully exploit underwater resources, the first step would be a marine environmental research and exploration on the seafloor. Traditionally one sets up a long-term underwater experimental unit on the seafloor and retrieves the unit later after a certain period time. Essential to these applications is the reliable teleoperation and telemetering of the unit. In our proposed ultrasonic-wave remote control system and an underwater sound recognition algorithm that can identify the sound signal without the influence of disturbances due to underwater environmental changes. The proposed method provides a means suitable for units which require low power dissipation and long-time underwater operation. We demonstrate its ability of securing stability and fast sound recognition through experimental methods.

  • PDF

Direct Simulation of Edge Tones by the Finite Difference Lattice Boltzmann Method (차분격자볼츠만법에 의한 Edge음의 직접계산)

  • Kang, Ho-Keun;Kim, Yu-Taek;Lee, Young-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.671-677
    • /
    • 2003
  • Two-dimensional direct numerical simulation of the edge-tones by the finite difference lattice Boltzmann method (FDLBM) is presented. We use a new lattice BGK compressible fluid model that has an additional term and allow larger time increment comparing the conventional FDLBM, and also use a boundary fitted coordinates. We have succeeded in capturing very small pressure fluctuations result from periodically oscillation of jet around the edge. That pressure fluctuations propagate with the sound speed. It is clarified that the sound wave generated in rather wide region and individual vortices do not affect the sound wave propagation.

  • PDF

A Study of the Compound Choking Phenomenon of Gas Flow in a Converging Nozzle (축소노즐에서 발생하는 기체유동의 복합 초킹현상에 관한 연구)

  • Lee Jun-Hee;Woo Sun-Hoon;Kim Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.147-150
    • /
    • 2002
  • In general, a single gas flow through a converging nozzle is choked when the pressure communications between the downstream and upstream flowfields are broken by the sonic condition of Mach number, M=1. A similar phenomenon may occur In two streams of different stagnation properties flowing side by side in a converging nozzle. In this case, the limiting condition of M=1 for flow choking is no longer applied to such a compound compressible flow. The compound choking phenomenon can be explained by means of a compound sound wave at the nozzle exit. In order to detail the flow characteristics involved in such a compound choking of the two streams, the two-dimensional, compressible, Wavier-Stokes equations have been solved using a fully implicit finite volume method and compared with the results of the one-dimensional theoretical analysis. The computational and theoretical results show that the compound sound wave can reasonably explain the compound choking phenomenon of the two streams in the convergent flow channel.

  • PDF

Effects of Material Properties on Optimal Configuration Design of Absorbing Porous Materials (흡음을 위한 다공성 물질의 최적형상설계에서 물성치의 영향)

  • Lee, Joong-Seok;Kim, Yoon-Young;Kang, Yeon-June
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.622-624
    • /
    • 2008
  • This investigation studies the effects of material properties and corresponding propagation wave types on optimal configurations of sound absorbing porous materials in maximizing the absorption performance by topology optimization. The acoustic behavior of porous materials is characterized by their material properties which determine motions of the frame and the air. When the frame has a motion, two types of compressional wave propagate in the porous material. Because each wave in the material make different influence on the absorption performance, it is important to understand the relative contribution of each wave to the sound absorption. The relative contribution of the propagating waves in a porous material is determined by the material properties, therefore, an optimal configuration of a porous material to maximize the absorption performance is apparently affected by the material properties. In fact, virtually different optimal configurations were obtained for absorption coefficient maximization when the topology optimization method developed by the authors was applied to porous materials having different material properties. In this investigation, some preliminary results to explain the findings are presented. Although several factors should be considered, the present investigation is focused on the effects of the material properties and corresponding propagation waves on the optimized configurations.

  • PDF

Design of Samduck Underground Parking Lot and Park in Anyang (안양 삼덕 지하주차공원 설계)

  • Choi Shin-Hyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.5 s.112
    • /
    • pp.114-122
    • /
    • 2005
  • Anyang city performed a design competition for the existing paper mill site and this design is the work that was submitted to that competition. The design instructions for the competition were about an organic site which had harmony of aboveground park and underground parking lot, establishment of park planning which is fit for the features of nearby areas, and security of proper parking space. This design criteria set the design concept to a new wave of Anyang by reflecting the design instructions of prize contest and features of the site and developed it as three waves. First, the eco wave, one of three waves, means that it compose the ecological healthy park and urban environment together with restoration and preservation of Suamcheon (stream), and futhermore the waves that the natural resource are maintained in a delicate ecological balance as the water resource of Anyang city are connected to the axis of mountain resource. Secondly, the emotion wave indicates that the wave toward culture and art emotional park that stimulates and fills up the emotion to makes impoverishing modems minds fertile. Thirdly, the health wave means the waves toward a park to keep the sound of minds and bodies of Anyang citizens, and healthy and sound life as well as the waves toward a park to contribute the healthy leap and development of Anyang. These three waves will enrich the park keeping the dynamic relationship mutually and will be a new culture and art code of Anyang city.