• Title/Summary/Keyword: sound /w/

Search Result 282, Processing Time 0.025 seconds

Characteristics of sound absorption materials by using ecological aggregates (에코골재를 사용한 흡음재의 특성)

  • Kim, Kang-Duk;Ryu, Yu-Gwang;Kim, Yoo-Taek
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.6
    • /
    • pp.264-270
    • /
    • 2008
  • Ecological lightweight aggregates were made by using the wastes come from various industrial fields. Wastes were crushed and pulverized by mills and a certain portions of wastes were mixed and formed by pelletizer like small beads. The formed lightweight aggregates were finally sintered with $1125^{\circ}C$/15 min conditions by using rotary kiln. Lightweight concrete sound absorbers were made of ecological lightweight aggregates K73 (Coal bottom ash 70 wt%: Dredged soil 30 wt%) and K631 (Clay 60 wt%: Stone sludge 30 wt%: Spent bleaching clay 10 wt%). For the reference, lightweight concrete sound absorbers made of DL (German made 'L' company LWA) were also made under the same conditions. Sound absorption characteristics were observed and measured according to the kinds of aggregates, water/cement ratio (W/C=20, 25, and 30%), and designed pore rates (V=20, 25, and 30%). The pore rates of the lightweight concrete sound absorber were turned out to be 5 to 10% higher than designed ones. Absorption coefficient of the lightweight concrete sound absorber by using K631 aggregates with W/C=20% and V=25% conditions was 0.88 at 1000 and 3150 Hz from the measurement by the impedance tube.

A Study on the factor of flanking transmission in the Wall (벽체 우회전달음 영향요소에 관한 연구)

  • Chung, J.Y.;Lee, S.H.;Kim, K.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.380-383
    • /
    • 2006
  • This study examines the influence factor of flanking transmission in the wall. Generally, there is the difference of airborne sound isolation between laboratory and field test. The purpose of this study is examing the cause of droping sound insulation performance in the field and searching the method of improving sound insulation performance. First, we measured the sound isolation in the wall at the lab. Then, we measured it in the field and compared them. At the base of these datum, we measured the flanking transmission and solid transmission. For the flanking transmission am the wall, we used intensive method. So, we found the influence of solid transmission.

  • PDF

Acoustical properties of Polypropylene MCPs in low frequency range (Polypropylene MCPs의 저주파대역 음향특성)

  • Lee B.H.;Cha S.W.;Kang Y.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.828-833
    • /
    • 2005
  • Micro Cellular Plastics create a sensation at polymer industrial for lowering product cost & overcoming a lowering of mechanical intensity. This research based on the experiment of sound absorption & transmission characteristics inquire into acoustical properties of Micro Cellular Plastics in low frequency range. TL difference of MCPs & Soild materials was defined as cell effect. Also, cell effect is expressed by sound reflection & sound absorption.

  • PDF

The research on the MEMS device improvement which is necessary for the noise environment in the speech recognition rate improvement (잡음 환경에서 음성 인식률 향상에 필요한 MEMS 장치 개발에 관한 연구)

  • Yang, Ki-Woong;Lee, Hyung-keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.12
    • /
    • pp.1659-1666
    • /
    • 2018
  • When the input sound is mixed voice and sound, it can be seen that the voice recognition rate is lowered due to the noise, and the speech recognition rate is improved by improving the MEMS device which is the H / W device in order to overcome the S/W processing limit. The MEMS microphone device is a device for inputting voice and is implemented in various shapes and used. Conventional MEMS microphones generally exhibit excellent performance, but in a special environment such as noise, there is a problem that the processing performance is deteriorated due to a mixture of voice and sound. To overcome these problems, we developed a newly designed MEMS device that can detect the voice characteristics of the initial input device.

STUDY ON THE OPTIMAL DESIGN OF A VEHICLE INTAKE SYSTEM USING THE BOOMING NOISE AND THE SOUND QUALITY EVALUATION INDEX

  • LEE J. K.;PARK Y. W.;CHAI J. B.
    • International Journal of Automotive Technology
    • /
    • v.7 no.1
    • /
    • pp.43-49
    • /
    • 2006
  • In this paper, an index for the evaluation of a vehicle intake booming noise and intake sound quality were developed through a correlation analysis and a multiple factor regression analysis of objective measurement and subjective evaluation data. At first, an intake orifice noise was measured at the wide-open throttle test condition. And then, an acoustic transfer function between intake orifice noise and interior noise at the steady state condition was estimated. Simultaneously, subjective evaluation was carried out with a 10-scale score by 8 intake noise and vibration expert evaluators. Next, the correlation analysis between the psychoacoustic parameters derived from the measured data and the subjective evaluation was performed. The most critical factor was determined and the corresponding index for intake booming noise and sound quality are obtained from the multiple factor regression method. And, the optimal design of intake system was studied using the booming noise and the sound quality evaluation index for expectation performance of intake system. Conclusively, the optimal designing parameters of intake system from noise level and sound quality whose point of view were extracted by adapting comparative weighting between the booming noise and sound quality evaluation index, which optimized the process. These work could be represented guideline to system engineers, designers and test engineers about optimization procedure of system performance by considering both of noise level and sound quality.

Implementation a Physical Ear Model for Determinating Location of the Microphone of Fully Implantable Middle Ear Hearing Device (완전 이식형 인공중이용 마이크로폰의 위치 결정을 위한 물리적 귀 모델의 구현)

  • Kim, D.W.;Seong, K.W.;Lim, H.K.;Kim, M.W.;Jung, E.S.;Lee, J.W.;Lee, M.W.;Lee, J.H.;Kim, M.N.;Cho, J.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.2 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Generally, implantable microphone has been implanted in the temporal bone for implantable middle ear hearing devices (IMEHDs). In this case, the microphone's membrane can be damaged and can be generated biological noise. In order to overcome the these problems, the location of implanted microphone should be changed. As an alternative, the microphone can be implanted in the external auditory canal. However, the sound emission can be produced because of vibration transducer toward reverse direction from the tympanic membrane to the external auditory canal. In this paper, an amount of the emitted sound is measured using a probe microphone as the changing the position of microphone in the external auditory canal of a physical ear model, which is similar to acoustical and vibratory properties of the human ear. Through the measured value, the location of the microphone was assumed in the external auditory canal. According to the analysis, the microphone input sound can be decreased when microphone position become more distance from the tympanic membrane in the auditory canal. However, the external auditory canal is not appropriated to implantable microphone position, because sound emission is not completely eliminated.

  • PDF

Research about correlation of slab vibration mode and heavy-weight floor impact sound (슬래브의 동특성과 중량충격음의 상관관계에 관한 연구)

  • Chung, J.Y.;Lee, S.W.;Im, J.B.;Jeong, G.C.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.839-843
    • /
    • 2008
  • Receiving room's floor impact sound level is been influenced to various factor of slab thickness, room size, structure etc. This study examined the noise of upper part slab and room mode in receiving room to be importance factor that influence in receiving room level among this factors. According to this study, vibration mode in slab and room mode are concentrated on frequency that is high level relatively. This causes bad effect in floor impact sound level. Therefore, method to reduce floor impact sound level is to change vibration mode using slab upper part's resilient material or reduce room mode in receiving room.

  • PDF

Measurement of Sound Speed Following the Fluid Temperature Using Acoustic Inspection Device

  • Jeon, E.S.;Kim, W.T.;Kim, I.S.;Park, H.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.207-211
    • /
    • 2010
  • In this paper, the fluid AID(acoustic inspection device) was developed to measure SOS(speed of sound) since fluids used in most of industrial fields have different properties and its equipment is highly expensive. From AID developed, it is intended to get potentially the capability to distinguish the kind of fluid using the measurement by the SOS at various fields. In order to measure the sound speed of specific fluids, the measurement system and ultrasonic sensors are composed. The fluid used in the experimental work are soybean oil, glycerin, diesel oil and the error of time difference due to the container wall is extracted for preliminary experiment. As results, the variations of sound speed according to the temperature change of target fluid were analyzed and the polynomial equations were proposed.

Sound Absorption Characteristics of Building Interior Decoration Materials (건축내장재의 흡음 특성)

  • Kang, Dae-Joon;Lee, J.W.;Gu, J.H.;Park, H.K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.3 s.120
    • /
    • pp.201-206
    • /
    • 2007
  • It is important to consider the sound absorption characteristics of building interior decoration materials when we design a building and simulate acoustics in a room. The purpose of this study is to accumulate acoustic data on building interior decoration materials and give a basic data for improving the sound absorption performance by testing the sound absorption coefficients of 9 types of ceiling materials, 14 types of wall papers and 20 types of floor papers.