• Title/Summary/Keyword: somatic variants

Search Result 15, Processing Time 0.029 seconds

Identification of Novel Functional Variants of SIN3A and SRSF1 among Somatic Variants in Acute Myeloid Leukemia Patients

  • Min, Jae-Woong;Koh, Youngil;Kim, Dae-Yoon;Kim, Hyung-Lae;Han, Jeong A;Jung, Yu-Jin;Yoon, Sung-Soo;Choi, Sun Shim
    • Molecules and Cells
    • /
    • v.41 no.5
    • /
    • pp.465-475
    • /
    • 2018
  • The advent of massively parallel sequencing, also called next-generation sequencing (NGS), has dramatically influenced cancer genomics by accelerating the identification of novel molecular alterations. Using a whole genome sequencing (WGS) approach, we identified somatic coding and noncoding variants that may contribute to leukemogenesis in 11 adult Korean acute myeloid leukemia (AML) patients, with serial tumor samples (primary and relapse) available for 5 of them; somatic variants were identified in 187 AML-related genes, including both novel (SIN3A, C10orf53, PTPRR, and RERGL) and well-known (NPM1, RUNX1, and CEPBA) AML-related genes. Notably, SIN3A expression shows prognostic value in AML. A newly designed method, referred to as "hot-zone" analysis, detected two putative functional noncoding variants that can alter transcription factor binding affinity near PPP1R10 and SRSF1. Moreover, the functional importance of the SRSF1 noncoding variant was further investigated by luciferase assays, which showed that the variant is critical for the regulation of gene expression leading to leukemogenesis. We expect that further functional investigation of these coding and noncoding variants will contribute to a more in-depth understanding of the underlying molecular mechanisms of AML and the development of targeted anti-cancer drugs.

Identification of Potential Prognostic Biomarkers in lung cancer patients based on Pattern Identification of Traditional Korean Medicine Running title: A biomarker based on the Korean pattern identification for lung cancer

  • Ji Hye Kim;Hyun Sub Cheong;Chunhoo Cheon;Sooyeon Kang;Hyun Koo Kim;Hyoung Doo Shin;Seong-Gyu Ko
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.27 no.2
    • /
    • pp.35-48
    • /
    • 2023
  • Objective : We studied prognostic biomarkers discovery for lung cancer based on the pattern identification for the personalized Korean medicine. Methods : Using 30 tissue samples, we performed a whole exome sequencing to examine the genetic differences among three groups. Results : The exome sequencing identified among 23,490 SNPs germline variants, 12 variants showed significant frequency differences between Xu and Stasis groups (P<0.0005). As similar, 18 and 10 variants were identified in analysis for Xu vs. Gentleness group and Stasis vs. Gentleness group, respectively (P<0.001). Our exome sequencing also found 8,792 lung cancer specific variants and among the groups identified 6, 34, and 12 variants which showed significant allele frequency differences in the comparison groups; Xu vs. Stasis, Xu vs. Gentleness group, and Stasis vs. Gentleness group. As a result of PCA analysis, in germline data set, Xu group was divided from other groups. Analysis using somatic variants also showed similar result. And in gene ontology analysis using pattern identification variants, we found genes like as FUT3, MYCBPAP, and ST5 were related to tumorigenicity, and tumor metastasis in comparison between Xu and Stasis. Other significant SNPs for two were responsible for eye morphogenesis and olfactory receptor activity. Classification of somatic pattern identification variants showed close relationship in multicellular organism reproduction, anion-anion antiporter activity, and GTPase regulator activity. Conclusions : Taken together, our study identified 40 variants in 29 genes in association with germline difference of pattern identification groups and 52 variants in 47 genes in somatic cancer tissues.

Genetic Risk Prediction for Normal-Karyotype Acute Myeloid Leukemia Using Whole-Exome Sequencing

  • Heo, Seong Gu;Hong, Eun Pyo;Park, Ji Wan
    • Genomics & Informatics
    • /
    • v.11 no.1
    • /
    • pp.46-51
    • /
    • 2013
  • Normal-karyotype acute myeloid leukemia (NK-AML) is a highly malignant and cytogenetically heterogeneous hematologic cancer. We searched for somatic mutations from 10 pairs of tumor and normal cells by using a highly efficient and reliable analysis workflow for whole-exome sequencing data and performed association tests between the NK-AML and somatic mutations. We identified 21 nonsynonymous single nucleotide variants (SNVs) located in a coding region of 18 genes. Among them, the SNVs of three leukemia-related genes (MUC4, CNTNAP2, and GNAS) reported in previous studies were replicated in this study. We conducted stepwise genetic risk score (GRS) models composed of the NK-AML susceptible variants and evaluated the prediction accuracy of each GRS model by computing the area under the receiver operating characteristic curve (AUC). The GRS model that was composed of five SNVs (rs75156964, rs56213454, rs6604516, rs10888338, and rs2443878) showed 100% prediction accuracy, and the combined effect of the three reported genes was validated in the current study (AUC, 0.98; 95% confidence interval, 0.92 to 1.00). Further study with large sample sizes is warranted to validate the combined effect of these somatic point mutations, and the discovery of novel markers may provide an opportunity to develop novel diagnostic and therapeutic targets for NK-AML.

Endoreduplication Pattern of Somatic Embryos and Variants Occurrence Affected by Pre-existed Endoreduplicated Cells in Doritaenopsis (Doritaenopsis 체세포배의 내배수성 특성과 절편체의 내배수성 세포에 기인한 체세포변이의 발생)

  • Park, So-Young;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.297-302
    • /
    • 2006
  • In general, the proliferation of orchids via somatic embryos has been used for mass production of somatic clones because of high propagation efficiency. In spite of high propagation rate, this method often brings somaclonal variation, especially polyploid frequency. Therefor we here concentrated to investigate the relationship between endopolyploidization patterns of explants and the occurrence of tetraploid variant in clonally proliferated Doritaenopsis via somatic embryo regeneration system. In the fully developed somatic embryo, upper part contained 2C to 16C while middle and lower parts showed 2C to 32C DNA content. Two-week-old embryo contained 2C to 16C, whereas those regenerated after 4 to 10-week-old contained 2C to 64C nuclei. Results showed that endoreduplication was variable depending upon tissue types, ages, and parts in one species. lower part of somatic embryo having high endoreduplication degree increased the regeneration of tetraploid variants by about 3-fold comparing to upper part of somatic embryo culture. polyploid frequency occurrence might be closely related to the high levels of endoreduplication of somatic embryos used as explant. It suggested that the upper part of somatic embryo having comparatively low endoreduplication degree is suitable for the stable in vitro propagation system.

Direct Somatic Embryogenesis of Curculigo orchioides Gaertn., an Endangered Medicinal Herb

  • Thomas, T.Dennis;Jacob, Alphonsa
    • Journal of Plant Biotechnology
    • /
    • v.6 no.3
    • /
    • pp.193-197
    • /
    • 2004
  • In vitro multiplication of Curculigo orchioides was achieved by direct somatic embryogenesis in young leaf segments. Immature leaf segments of about 0.5 cm in length were cultured on MS medium supplemented with different concentrations of BAP (2-10 $\mu{M}$) or Kin (2-10 $\mu{M}$). Optimum response in terms of per cent cultures responding (89%) and the number of embryos per explant (16) were observed on MS medium supplemented with 8 $\mu$M BAP. The emergence of several somatic embryos on the adaxial side of the leaf segments was observed one month after the culture. Germinated somatic embryos were grown up to about 1.5 cm length before transferring to maturation medium. For maturation, the individual embryos were isolated and transferred to MS medium supplemented with BAP (5 $\mu{M}$) and NAA (0.5 $\mu{M}$). The plantlets emerged from the embryos were transferred to soil containing 1 peat: 1 sand with 90% success. The embryos were formed directly on the leaf segments without any callus phase. Direct regeneration of somatic embryos is important for the conservation of this endangered species, as rare somaclonal variants are likely to arise than from indirect regeneration.

Regeneration of Plants from EMS-treated Immature Embryo Cultures in Soybean [Glycine max(L.) Merr.]

  • Van, Kyu-Jung;Jang, Hyun-Ju;Jang, Young-Eun;Lee, Suk-Ha
    • Journal of Crop Science and Biotechnology
    • /
    • v.11 no.2
    • /
    • pp.119-126
    • /
    • 2008
  • Since somatic embryogenesis combined with ethylmethane sulfonate(EMS) treatments is the most efficient technique for mutagenesis, the embryogenic capacity of four soybean cultivars was evaluated at different EMS concentrations, treatment times, and preculture durations. Two to 4 mm long immature cotyledons were placed in induction medium after EMS treatment, and the numbers of somatic embryos formed per explant were counted four weeks after culture initiation. We observed genotypic differences in the efficiency of somatic embryogenesis from immature embryos among four cultivars treated with different concentrations of EMS for six hours. Cultivars, Sinpaldalkong 2 and Jack, displayed highly efficient somatic embryogenesis regardless of EMS concentration, whereas very low efficiency or no survival was observed in Jinju 1 and Iksannamulkong cultivars. Preculture duration did not influence the efficiency of somatic embryogenesis. Because Sinpaldalkong 2 exhibited the best somatic embryogenesis, much higher concentrations of EMS were used to test somatic embryo formation under different periods of time in this cultivar. Three and six hour treatments with both 1 and 2 mM EMS yielded higher embryo formation than longer periods of time. Increasing the time with embryos in 2 mM EMS caused a reduction in somatic embryogenesis in Sinpaldalkong 2, but many chlorophyll-deficient soybean variants were identified in the $M_1R_0$ and $M_2R_1$ generations. In addition to Jack, Sinpaldalkong 2 is a good genotype for plant regeneration from EMS-treated immature embryo cultures.

  • PDF

Variations in Sweetpotato Regenerates from Gamma-ray Irradiated Embryogenic Callus

  • Lee, Young-Ill;Lee, In-Sok;Lim, Yong-Pyo
    • Journal of Plant Biotechnology
    • /
    • v.4 no.4
    • /
    • pp.163-170
    • /
    • 2002
  • Radiation induced and somaclonal variations were investigated in the regenerates from gamma irradiated and controlled embryogenic callus (EC) of sweetpotato cvs., Yulmi and White Star by morphological, RAPD and AFLP analysis. Most (approx. 90%) of the EC produced somatic embryos developed into plantlets after being transferred to the auxin-free medium. The frequency of morphological variants derived from the irradiated callus ranged from 3 to 7.8% compared to 0.1-1.1% of that derived from the non-irradiated. Morphological variants were selected from the regenerates and analyzed by RAPD and AFLP procedures. RAPD polymorphisms of Yulmi and White Star regenerates from irradiated calli were 8.8% and 6.1%, respectively. However, the polymerphisms among regenerates from the non-irradiation treatment in these two cultivars were non-detectable and 3%, respectively. AFLP polymorphisms of Yulmi and White Star regenerates from irradiated calli were 29.9% and 28.6%, respectively. while the frequencies for those form non-irradiated calli were 8.5% and 5.6%, respectively. Both the control plants and variants from the nonirradiated were clustered together, while variants from irradiated were separated from the group by Nearest-Neighbor-Interchange Branch Swapping Abbreviation: EC (Embryogenic callus), AFLP (Amplified Fragment Length Polymorphism), RAPD (Random amplified polymorphic DNA)

In vitro propagation of oil palm (Elaeis guineensis Jacq.) clones through somatic embryogenesis and analysis of somaclonal variation by RAPD (체세포배발생을 통한 오일팜나무(Elaeis guineensis Jacq.) 클론의 기내증식 및 RAPD를 이용한 체세포변이의 검정)

  • Ahn, In-Suk;Park, Hye-Rim;Son, Sung-Ho
    • Journal of Plant Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.196-204
    • /
    • 2012
  • This study was carried out to develop reliable systems for somatic embryogenesis in oil palm tree (Elaeis guineensis Jacq.), and to verify the somaclonal variants by RAPD analysis. Embryogenic callus was induced successfully on modified half-strength MS medium containing $NaH_2PO_4{\cdot}2H_2O$ and casein. Embryogenic callus was further developed to somatic embryo mass (SEM), which is very hard and bonded tightly each other. Plantlets were proliferated when SEM was cultured on modified MS medium containing half strength $NH_4NO_3$, casein and L-ascorbic acid. Plantlets were transplanted into pots containing artificial soils. When RAPD analysis was conducted using randomly selected 95 in vitro plantlets and 19 random primers, somaclonal variation was detected using BNR35 primer. There was missing band around 1 kb in #22, #28, #35, and #77 plantlets. In addition, bands obtained from #28, #35, and #77 was much stronger than other normal bands. The blast results at NCBI revealed that somaclonal variation observed in this study was related to chloroplast genome of oil palm. The results also revealed that oil palm reproduction system through somatic embryogenesis is quite reliable and early detection of somaclonal variants seem to be possible at in vitro stage by RAPD analysis.

PCR-SSCP of Serum Lysozyme Gene (Exon-III) in Riverine Buffalo and Its Association with Lysozyme Activity and Somatic Cell Count

  • Sahoo, Nihar Ranjan;Kumar, Pushpendra;Bhushan, Bharat;Bhattacharya, T.K.;Sharma, Arjava;Dayal, Sanker;Pankaj, Prabhat Kumar;Sahoo, Monalisa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.8
    • /
    • pp.993-999
    • /
    • 2010
  • Serum lysozyme gene is one of the important genes influencing the immune system as its product can cause lysis of bacterial cell wall by cleaving the peptidoglycan layer. The present investigation on the serum lysozyme gene of Indian riverine buffalo was undertaken with the objectives to identify and characterize single nucleotide polymorphic patterns by PCR-SSCP method as well as to study the effect of different genotypes on serum lysozyme activity and somatic cell count. A total of 280 animals comprising four different famous bubaline breeds (Murrah, Mehsana, Surti and Bhadawari), spread over six different farms across the country were used for this study. A 276 bp (partial intron 2, complete exon 3 and partial intron 3) fragment of lysozyme gene was screened for polymorphism using the SSCP technique. Four genotypes namely AA, AB, BC and AC were observed, out of which BC genotype was found to be the most frequent. Among these three alleles, C allele (0.38) was most prevalent in these populations. Various SSCP allelic variants were cloned for sequencing and sequences were submitted to NCBI Genbank. From the alignment of the nucleotide sequences of various allelic variants, it was found that there were differences in 12 positions among the alleles, out of which maximum variation (at 8 places) was found in the intronic region. The allele A was closer to allele-C than allele-B. Allele B was phylogenetically equidistant from both of the other alleles. Mean lysozyme activity determined in serum samples of different animals of Murrah buffalo was $27.35{\pm}2.42\;{\mu}g$ per ml of serum, whereas the mean somatic cell count was $1.25{\pm}0.13{\times}10^5$ cells per ml of milk. The SSCP pattern-wise effects of various genotypes on lysozyme activity and SCC were analyzed. Although the mean values were apparently different in various genotypes, these differences were statistically non-significant. It can be concluded that the riverine buffaloes are sufficiently polymorphic with respect to serum lysozyme gene. The absence of AA genotype in Bhadawari breed of buffalo can be considered as a marker for breed characterization. The difference of four nucleotides in exon-3 indicates high selection pressure on the gene.

Role of MYH Polymorphisms in Sporadic Colorectal Cancer in China: A Case-control, Population-based Study

  • Yang, Liu;Huang, Xin-En;Xu, Lin;Zhou, Jian-Nong;Yu, Dong-Sheng;Zhou, Xin;Li, Dong-Zheng;Guan, Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6403-6409
    • /
    • 2013
  • Purpose: Biallelic germline variants of the 8-hydroxyguanine (8-OG) repair gene MYH have been associated with colorectal neoplasms that display somatic $G:C{\rightarrow}T:A$ transversions. However, the effect of single germline variants has not been widely studied, prompting the present investigation of monoallelic MYH variants and susceptibility to sporadic colorectal cancer (CRC) in a Chinese population. Patients and Methods: Between January 2006 and December 2012, 400 cases of sporadic CRC and 600 age- and sex-matched normal blood donors were screened randomly for 7 potentially pathogenic germline MYH exons using genetic testing technology. Variants of heterozygosity at the MYH locus were assessed in both sporadic cancer patients and healthy controls. Univariate and multivariate analyses were performed to determine risk factors for cancer onset. Results: Five monoallelic single nucleotide polymorphisms (SNPs) were identified in the 7 exon regions of MYH, which were detected in 75 (18.75%) of 400 CRC patients as well as 42 (7%) of 600 normal controls. The region of exon 1 proved to be a linked polymorphic region for the first time, a triple linked variant including exon 1-316 $G{\rightarrow}A$, exon 1-292 $G{\rightarrow}A$ and intron 1+11 $C{\rightarrow}T$, being identified in 13 CRC patients and 2 normal blood donors. A variant of base replacement, intron 10-2 $A{\rightarrow}G$, was identified in the exon 10 region in 21 cases and 7 controls, while a similar type of variant in the exon 13 region, intron 13+12 $C{\rightarrow}T$, was identified in 8 cases and 6 controls. Not the only but a newly missense variant in the present study, p. V463E (Exon 14+74 $T{\rightarrow}A$), was identified in exon 14 in 6 patients and 1 normal control. In exon 16, nt. 1678-80 del GTT with loss of heterozygosity (LOH) was identified in 27 CRC cases and 26 controls. There was no Y165C in exon 7 or G382D in exon 14, the hot-spot variants which have been reported most frequently in Caucasian studies. After univariate analysis and multivariate analysis, the linked variant in exon 1 region (p=0.002), intron 10-2 $A{\rightarrow}G$ (p=0.004) and p. V463E (p=0.036) in the MYH gene were selected as 3 independent risk factors for CRC. Conclusions: According to these results, the linked variant in Exon 1 region, Intron 10-2 $A{\rightarrow}G$ of base replacement and p. V463E of missense variant, the 3 heterozygosity variants of MYH gene in a Chinese population, may relate to the susceptibility to sporadic CRC. Lack of the hot-spot variants of Caucasians in the present study may due to the ethnic difference in MYH gene.