Browse > Article
http://dx.doi.org/10.14348/molcells.2018.0051

Identification of Novel Functional Variants of SIN3A and SRSF1 among Somatic Variants in Acute Myeloid Leukemia Patients  

Min, Jae-Woong (Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University)
Koh, Youngil (Department of Internal Medicine, Seoul National University Hospital)
Kim, Dae-Yoon (Cancer Research Institute, Seoul National University College of Medicine)
Kim, Hyung-Lae (Department of Biochemistry, School of Medicine, Ewha Woman's University)
Han, Jeong A (Department of Biochemistry and Molecular Biology, School of Medicine, Kangwon National University)
Jung, Yu-Jin (Department of Biological Sciences, Kangwon National University)
Yoon, Sung-Soo (Department of Internal Medicine, Seoul National University Hospital)
Choi, Sun Shim (Division of Biomedical Convergence, College of Biomedical Science, Institute of Bioscience & Biotechnology, Kangwon National University)
Abstract
The advent of massively parallel sequencing, also called next-generation sequencing (NGS), has dramatically influenced cancer genomics by accelerating the identification of novel molecular alterations. Using a whole genome sequencing (WGS) approach, we identified somatic coding and noncoding variants that may contribute to leukemogenesis in 11 adult Korean acute myeloid leukemia (AML) patients, with serial tumor samples (primary and relapse) available for 5 of them; somatic variants were identified in 187 AML-related genes, including both novel (SIN3A, C10orf53, PTPRR, and RERGL) and well-known (NPM1, RUNX1, and CEPBA) AML-related genes. Notably, SIN3A expression shows prognostic value in AML. A newly designed method, referred to as "hot-zone" analysis, detected two putative functional noncoding variants that can alter transcription factor binding affinity near PPP1R10 and SRSF1. Moreover, the functional importance of the SRSF1 noncoding variant was further investigated by luciferase assays, which showed that the variant is critical for the regulation of gene expression leading to leukemogenesis. We expect that further functional investigation of these coding and noncoding variants will contribute to a more in-depth understanding of the underlying molecular mechanisms of AML and the development of targeted anti-cancer drugs.
Keywords
acute myeloid leukemia; somatic variants; whole genome sequencing;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Cancer Genome Atlas Research Network. (2013). Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N. Engl. J. Med. 368, 2059-2074.   DOI
2 Cancer Genome Atlas Research Network. (2015). Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N. Engl. J. Med. 372, 2481-2498.   DOI
3 Lee, J., Lee, J., Kim, S., Kim, S., Youk, J., Park, S., An, Y., Keam, B., Kim, D.W., Heo, D.S., et al. (2017). Clonal history and genetic predictors of transformation into small-cell carcinomas from lung adenocarcinomas. J. Clin. Oncol. 35, 3065-3074.   DOI
4 Lee, L.Y., Hernandez, D., Rajkhowa, T., Smith, S.C., Raman, J.R., Nguyen, B., Small, D., and Levis, M. (2017). Preclinical studies of gilteritinib, a next-generation FLT3 inhibitor. Blood 129, 257-260.   DOI
5 Keightley, P.D., Lercher, M. J., and Eyre-Walker, A. (2005). Evidence for widespread degradation of gene control regions in hominid genomes. PLoS Biol. 3, e42.   DOI
6 Deschler, B., and Lübbert, M. (2006). Acute myeloid leukemia: Epidemiology and etiology. Cancer 107, 2099-2107.   DOI
7 Chen, L., Wang, W., Cao, L., Li, Z., and Wang, X. (2016). Long noncoding RNA CCAT1 acts as a competing endogenous RNA to regulate cell growth and differentiation in acute myeloid leukemia. Mol. Cells 39, 330-336.   DOI
8 Das, S., and Krainer, A.R. (2014). Emerging functions of SRSF1, splicing factor and oncoprotein, in RNA metabolism and cancer. Mol. Cancer Res. 12, 1195-1204.   DOI
9 de Voer, R.M., Hahn, M.M., Mensenkamp, A.R., Hoischen, A., Gilissen, C., Henkes, A., Spruijt, L., van Zelst-Stams, W.A., Kets, C.M., Verwiel, E.T., et al. (2015). Deleterious germline BLM mutations and the risk for early-onset colorectal cancer. Sci. Rep. 5, 14060.   DOI
10 DiNardo, C.D., Ravandi, F., Agresta, S., Konopleva, M., Takahashi, K., Kadia, T., Routbort, M., Patel, K.P., Mark Brandt., Pierce, S., et al. (2015). Characteristics, clinical outcome, and prognostic significance of IDH mutations in AML. Am. J. Hematol. 90, 732-736.   DOI
11 Efron, B. (1988). Logistic regression, survival analysis, and the kaplanmeier curve. J. Am. Stat. Assoc. 83, 414-425.   DOI
12 ENCODE Project Consortium. (2004). The ENCODE (ENCyclopedia of DNA elements) project. Science 306, 636-640.   DOI
13 Farre, D., Bellora, N., Mularoni, L., Messeguer, X., and Alba, M.M. (2007). Housekeeping genes tend to show reduced upstream sequence conservation. Genome Biol. 8, R140.   DOI
14 Jiang, S., Willox, B., Zhou, H., Holthaus, A.M., Wang, A., Shi, T. T., Maruo, S., Kharchenko, P.V., Johannsen, E.C., Kieff, E., et al. (2014). Epstein-barr virus nuclear antigen 3C binds to BATF/IRF4 or SPI1/IRF4 composite sites and recruits Sin3A to repress CDKN2A. Proc. Natl. Acad. Sci. USA 111, 421-426.   DOI
15 Ferrara, F., and Schiffer, C.A. (2013). Acute myeloid leukaemia in adults. Lancet 381, 484-495.   DOI
16 Graham, T.A., and Sottoriva, A. (2017). Measuring cancer evolution from the genome. J. Pathol. 241, 183-191.   DOI
17 Greenberg, P., Cox, C., LeBeau, M.M., Fenaux, P., Morel, P., Sanz, G., Sanz, M., Vallespi, T., Hamblin, T., Oscier, D., et al. (1997). International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89, 2079-2088.
18 Heideman, M.R., Lancini, C., Proost, N., Yanover, E., Jacobs, H., & Dannenberg, J.H. (2014). Sin3a-associated Hdac1 and Hdac2 are essential for hematopoietic stem cell homeostasis and contribute differentially to hematopoiesis. Haematologica 99, 1292-1303.   DOI
19 Hulegardh, E., Nilsson, C., Lazarevic, V., Garelius, H., Antunovic, P., Rangert Derolf, A, Mollgard, L., Uggla, B., Wennstrom, L., Wahlin, A., et al. (2015). Characterization and prognostic features of secondary acute myeloid leukemia in a population-based setting: A report from the swedish acute leukemia registry. Am. J. Hematol. 90, 208-214.   DOI
20 Jiang, L., Huang, J., Higgs, B. W., Hu, Z., Xiao, Z., Yao, X., Conley, S., Zhong, H., Liu, Z., Brohawn, P., et al. (2016). Genomic landscape survey identifies SRSF1 as a key oncodriver in small cell lung cancer. PLoS Genet. 12, e1005895.   DOI
21 Lawrence, M.S., Stojanov, P., Polak, P., Kryukov, G.V., Cibulskis, K., Sivachenko, A., Carter, S.L., Stewart, C., Mermel, C.H., Roberts, S.A., et al. (2013). Mutational heterogeneity in cancer and the search for new cancer-associated genes. Nature 499, 214-218.   DOI
22 Juliusson, G., Antunovic, P., Derolf, A., Lehmann, S., Mollgard, L., Stockelberg, D., Tidefelt, U., Wahlin, A., and Höglund, M. (2009). Age and acute myeloid leukemia: Real world data on decision to treat and outcomes from the swedish acute leukemia registry. Blood 113, 4179-4187.   DOI
23 Kandoth, C., McLellan, M.D., Vandin, F., Ye, K., Niu, B., Lu, C., Xie, M., Zhang, Q., McMichael, J.F., Wyczalkowski, M.A., et al. (2013). Mutational landscape and significance across 12 major cancer types. Nature 502, 333-339.   DOI
24 Kircher, M., Witten, D.M., Jain, P., O'Roak, B.J., Cooper, G.M., and Shendure, J. (2014). A general framework for estimating the relative pathogenicity of human genetic variants. Nat. Genet. 46, 310-315.   DOI
25 Koboldt, D.C., Zhang, Q., Larson, D. E., Shen, D., McLellan, M.D., Lin, L., Miller, C.A., Mardis, E.R., Ding, L., and Wilson, R.K. (2012). VarScan 2: Somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568-576.   DOI
26 Lanotte, M., Martin-Thouvenin, V., Najman, S., Balerini, P., Valensi, F., and Berger, R. (1991). NB4, a maturation inducible cell line with t(15;17) marker isolated from a human acute promyelocytic leukemia (M3). Blood 77, 1080-1086.
27 Lee, S., Chen, J., Zhou, G., Shi, R. Z., Bouffard, G.G., Kocherginsky, M., Ge, X., Sun, M., Jayathilaka, N., Kim, Y.C., et al. (2006). Gene expression profiles in acute myeloid leukemia with common translocations using SAGE. Proc. Natl. Acad. Sci. USA 103, 1030-1035.   DOI
28 Li, Y., Liang, M., and Zhang, Z. (2014). Regression analysis of combined gene expression regulation in acute myeloid leukemia. PLoS Comput. Biol. 10, e1003908.   DOI
29 Ley, T. J., Mardis, E. R., Ding, L., Fulton, B., McLellan, M.D., Chen, K., Dooling, D., Dunford-Shore, B.H., McGrath, S., Hickenbotham, M., et al. (2008). DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature 456, 66-72.   DOI
30 Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics 25, 1754-1760.   DOI
31 Malakar, P., Shilo, A., Mogilevsky, A., Stein, I., Pikarsky, E., Nevo, Y., Benyamini, H., Elgavish, S., Zong, X., et al. (2017). Long noncoding RNA MALAT1 promotes hepatocellular carcinoma development by SRSF1 upregulation and mTOR activation. Cancer Res. 77, 1155-1167.   DOI
32 Mathelier, A., Zhao, X., Zhang, A. W., Parcy, F., Worsley-Hunt, R., Arenillas, D.J., Buchman, S., Chen, C.Y., Chou, A., Ienasescu, H., et al. (2014). JASPAR 2014: An extensively expanded and updated openaccess database of transcription factor binding profiles. Nucleic Acids Res. 42, D142-7.   DOI
33 Mathelier, A., Fornes, O., Arenillas, D.J., Chen, C.Y., Denay, G., Lee, J., Shi, W., Shyr, C., Tan, G., Worsley-Hunt, R., et al. (2016). JASPAR 2016: A major expansion and update of the open-access database of transcription factor binding profiles. Nucleic Acids Res. 44, D110-5.   DOI
34 McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., et al. (2010). The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297-1303.   DOI
35 McLean, C.Y., Bristor, D., Hiller, M., Clarke, S. L., Schaar, B.T., Lowe, C.B., Wenger, A.M., and Bejerano, G. (2010). GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495-501.   DOI
36 Patel, J.P., Gönen, M., Figueroa, M.E., Fernandez, H., Sun, Z., Racevskis, J., Van Vlierberghe, P., Dolgalev, I., Thomas, S., Aminova, O., et al. (2012). Prognostic relevance of integrated genetic profiling in acute myeloid leukemia. N. Engl. J. Med. 366, 1079-1089.   DOI
37 Ong, C., and Corces, V.G. (2011). Enhancer function: New insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 12, 283-293.
38 Oran, B., and Weisdorf, D.J. (2012). Survival for older patients with acute myeloid leukemia: A population-based study. Haematologica 97, 1916-1924.   DOI
39 Papaemmanuil, E., Gerstung, M., Bullinger, L., Gaidzik, V.I., Paschka, P., Roberts, N.D., Potter, N.E., Heuser, M., Thol, F., Bolli, N., et al. (2016). Genomic classification and prognosis in acute myeloid leukemia. N. Engl. J. Med. 374, 2209-2221.   DOI
40 Rapin, N., Bagger, F.O., Jendholm, J., Mora-Jensen, H., Krogh, A., Kohlmann, A., Thiede, C., Borregaard, N., Bullinger, L., Winther, O., et al. (2014). Comparing cancer vs normal gene expression profiles identifies new disease entities and common transcriptional programs in AML patients. Blood 123, 894-904.   DOI
41 Royston, P., and Altman, D.G. (2013). External validation of a cox prognostic model: Principles and methods. BMC Med. Res. Methodol. 13, 33-2288-13-33.   DOI
42 Rozen, S., and Skaletsky, H. (2000). Primer3 on the WWW for general users and for biologist programmers. Methods Mol. Biol. 132, 365-386.
43 Stein, E.M., DiNardo, C.D., Pollyea, D.A., Fathi, A.T., Roboz, G.J., Altman, J.K., Stone, R.M., DeAngelo, D.J., Levine, R.L., Flinn, I.W., et al. (2017). Enasidenib in mutant-IDH2 relapsed or refractory acute myeloid leukemia. Blood 130, 722-731.   DOI
44 Ward, L.D., and Kellis, M. (2011). HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40, D930-D934.
45 Stephens, P.J., Tarpey, P.S., Davies, H., Van Loo, P., Greenman, C., Wedge, D.C., Nik-Zainal, S., Martin, S., Varela, I., Bignell, G.R., et al. (2012). The landscape of cancer genes and mutational processes in breast cancer. Nature 486, 400-404.   DOI
46 Tan, G., and Lenhard, B. (2016). TFBSTools: An R/bioconductor package for transcription factor binding site analysis. Bioinformatics 32, 1555-1556.   DOI
47 Wang, K., Li, M., and Hakonarson, H. (2010). ANNOVAR: Functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res., 38, e164.   DOI
48 Ward, L.D., and Kellis, M. (2012). Interpreting noncoding genetic variation in complex traits and human disease. Nat. Biotechnol. 30, 1095-1106.   DOI
49 Zhang, Q., Cheng, T., Jin, S., Guo, Y., Wu, Y., Liu, D., Xu, X., Sun, Y., Li, Z., He H., et al. (2017). Genome-wide open chromatin regions and their effects on the regulation of silk protein genes in bombyx mori. Sci. Rep. 7, 12919.   DOI