• Title/Summary/Keyword: somatic embryogenic callus

Search Result 118, Processing Time 0.021 seconds

Effect of Casein on Somatic Embryogenesis and Plant Regeneration in Shoot Apical Meristem Explants of Sweetpotato (Ipomoea batatas L.) (고구마 정단분열조직으로부터 체세포배발생 및 식물체 재분화에 미치는 casein의 영향)

  • Shin, Kong-Sik;Roh, Kyung-Hee;Lee, Yeon-Hee;Park, Young-Whan;Suh, Seok-Cheol
    • Journal of Plant Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.67-72
    • /
    • 2004
  • An efficient protocol has been developed for rapid mass propagation of sweetpotato from shoot-tips derived embryogenic callus. Optimal embryogenic callus was induced from shoot apical meristem explants on Murashige and Skoog (MS) medium supplemented with 1mg/L 2,4-D. The addition of casein hydrolysate in the media increased the embryogenesis efficiency of sweetpotato. Somatic embryos were easily induced from the embryogenic callus on MS basal medium containing 300-500mg/L casein hydrolysate without phytohormon. Treatment of casein hydrolysate (100∼300mg/L) with 1mg/L 2,4-D also improved the secondary embryonic efficiency from somatic embryos below 2mm in length. Plant regeneration was achieved via somatic embryogenesis and direct organogenesis. Regenerated planlets with well developed shoots and roots on MS basal medium were successfully transferred to soil.

Somatic embryo induction and plant regeneration from cold-stored embryogenic callus of K. septemlobus (저온저장 음나무 배발생 캘러스로부터 체세포배 유도와 식물체 재생)

  • Lee, Na Nyum;Choi, Yong Eui;Moon, Heung Kyu
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.388-395
    • /
    • 2015
  • Somatic embryogenesis is as an excellent technology for potential use in plant mass production, germplasm conservation, or genetic engineering. We examined the effect of cold storage using 3 embryogenic callus lines with different levels of embryogenesis competence derived from immature zygotic embryo cultures of Kalopanax setemlobus. Somatic embryo induction, germination and plant conversion were evaluated after 1, 3 and 6 months storage at $4^{\circ}C$ in the dark. Most cold-stored embryogenic calli formed somatic embryos normally even after 6 months; however, the induction rate was gradually decreased by increasing the storage period. The most competent line tended to show a slight decline in somatic embryo induction rate, as compared with other lines after cold storage. In general, cold storage resulted in reduced somatic embryo germination and plant regeneration, although 93% somatic embryo germination and 91% plant conversion were achieved regardless of the storage period. Cold storage led to cell browning and degradation. Additionally, the cell structures were confirmed by the aceto-carmine and evans blue dye evaluation. Collectively, our results showed that embryogenic callus of K. septemlobus could be preserved at $4^{\circ}C$ without subculture for 6 months, and suggested the need for storage of relatively more competent embryogenic calli lines to support somatic embryo induction.

Production and Developmental Pattern of Embryogenic Callus in Oenanthe javanica ($B_{L.}$) DC. (미나리 체세포 배발생 캘러스의 획득과 발달 형태)

  • Gab Cheon KOH;Chang Soon AHN
    • Korean Journal of Plant Tissue Culture
    • /
    • v.22 no.5
    • /
    • pp.283-290
    • /
    • 1995
  • This experiment was canted out to obtain embryogenic callus and to understand developmental mechanism of somatic embryogenesis in Oenanthe javanica ($B_{L.}$) DC. experiments included the examination of explant source and media for embryogenic callus production and the observation of developmental pattern of embryogenic cells and non-embryogenic cells. Embryogenic calli were formed on zygotic pro-embryos together with their endosperms when they were cultured on Ms media containing 1.0mg/L 2,4-D. Embryogenic calli were also formed on the intact surface in vitro grown stem or petiole segmentsafrer 6-8 weeks of culture, whereas non-embryogenic calli were formed on cut surfaces of the stem and petiole after 2 weeks of culture. Non-embryogenic calli were rhizogenic in suspension and solid media culture.

  • PDF

Indentification of Specific Proteins synthesized During Somatic Embryogenesis of Rice (벼 callus로부터 재분화 과정에서 생성되는 특수한 단백질의 동정)

  • Won, Jae Hee;Choi, Hong Jib;Kim, Dal Ung
    • Current Research on Agriculture and Life Sciences
    • /
    • v.9
    • /
    • pp.95-102
    • /
    • 1991
  • This study was conducted to investigate the physiological and biochemical elements relating embryogenisis. Also we examined the differences of protein in embryogenic callus and nonembryogenic callus by SDS-PAGE and two-dimensional gel electrophoresis. In this study, we have focused attention on the process of total proteins during sometic embryogenesis of rice. When compared the proteins of embryogenic callus and nonembryogenic callus, some different proteins were observed and serval proteins were increased in embryogenic callus. Some proteins were decreased or disappeared in embryogenic callus. Near 43kD protein band was only observed in embryogenic callus. The other bands were similar to each lines. The result of two-diimensional gel electrophoresis, E-callus specific proteins were observed. This Results may indicate that these proteins were associated with somatic embryogenesis.

  • PDF

High Frequency Somatic Embryogenic Callus Induction and Plant Regeneration from Various Indica Rice Genotypes

  • Hoque Md. Enamul;Mansfield John W.
    • Journal of Plant Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.257-262
    • /
    • 2006
  • The paper evaluated the behavior of in vitro culture responses from a diverse set of Indica rice (Oryza sativa L.) genotypes. Significant differences were found in embryogenic callus induction frequency, callus growth and plant regeneration frequency when mature embryos of 11 cultivars, breeding lines and land races were compared. Genotype as well as plant growth regulator influenced the plant regeneration frequency. Callus induction frequency was not correlated with callus growth as well as plant regeneration frequency. The regenerated plants could grow to normal, fertile plants after they were successfully established in soil.

Plant Regeneration through Somatic Embryogenesis from Embryogenic Callus of Lacquer Tree (Rhus vernicifera Stokes) (참옻나무(Rhus verniciflua)배발생캘러스로부터 체세포배발생에 의한 식물체 재분화)

  • Kim, Jae-Whune;Lee, Won-Seok;Kwon, Ki-Won;In, Jun-Gyo;Choi, Yong-Eui
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.275-279
    • /
    • 2003
  • Excised cotyledons and embryo axises of zygotic embryos of Rhus vemicifera were cultured on Murashige and Skoog(MS) medium with various concentrations of 2,4-D. About 3-5% of explants produced callus. Embryogenic callus was preferentially induced from basal parts of embryo axis of zygotic embryos seeds when they were cultured without removal of seed coats. Somatic embryos were developed from embryogenic callus in growth regulator-free medium after 2-3 subcultures on medium with 1.0mg/L 2,4-D and these embryos were matured to cotyledonary stage. Plantlets with well-developed shoots and roots from embryos were obtained on $\frac{1}{4}$MS medium with GA$_{3}$. After acclimatization of plantlets on artificial soil, they were exposed to soil pots.

Isolation and Culture of Protoplasts Derived from Embryogenic Cell Suspension Culture of Oryza sativa (Rice) (벼 진탕 배 배양세포로부터 원형질체 분리 및 배양)

  • Hwang, Baik;Kim, Mee-Kyung;Vasil, I. K.
    • Journal of Plant Biology
    • /
    • v.31 no.1
    • /
    • pp.41-49
    • /
    • 1988
  • Several cultivars of rice were examined for induction of embryogenic callus on a medium containing MS salts, vitamins and 2, 4-D under darkness. Embryogenic callus was obtained from cultivar Cheonma with high ratio and embryo-like structures were formed from the callus on a medium with or without reduced 2, 4-D. Somatic embryoids with a plumule and radicle axis surrounded by a scutellum were observed. These embryoids germinated and produced plantlets in 30 days on the same medium. Protoplasts isolated from an embryogenic cell suspension culture derived from embryogenic callus were cultured either in liquid or in agar medium and protoplast derived cell colonies were obtained in 3-4 weeks.

  • PDF

Efficient Agrobacterium-Mediated Transformation of Alfalfa Using Secondary Somatic Embryogenic Callus (알팔파의 이차 캘러스를 이용한 Agrobacterium에 의한 효율적인 형질 전환)

  • 이병현;원성혜;이효신;김기용;조진기
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.20 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • An efficient method for Agrobacterium-mediated transformation of forage crop alfalfa (Medicago sativa L.) was established using secondary somatic embryogenic calli. Agrobacterium tumefaciens strain EHAlOl and a binary vector pIG121-Hm which has selection markers for kanamycin and hygromycin have been shown to be an efticient materials for alfalfa transformation. The secondary somatic embryogenic calli originated from hypocotyl explants of alfalfa were efficient infection materials for Agrobacterium EHAlOl and normally germinated into plantlets. The introduced gene (GUS) was constitutively expressed in all tissues of transgenic alfalfa with different expression levels. These results indicate that the use of pIG121-Hm vector, Agrobacterium EHAlOl and improved culture system of callus facilitate the transformation of alfalfa. (Key words : Agrobacterium, Alfalfa, Gene transfer, Transformation)

  • PDF

Effects of Ascorbate on Somatic Embryogenesis in Carrot Cell Cultures (당근 세포배양으로부터 체세포배 발생에 미치는 아스콜빈산의 효과)

  • 소웅영;김이엽;조덕이
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.3
    • /
    • pp.143-148
    • /
    • 1999
  • This study was conducted to elucidate the effects of ascorbic acid and dehydroascorbic acid on somatic embryogenesis from the cultured cells of carrot. Ascorbic acid in culture medium merely stimulated the proliferation of non-embryogenic cells but dehydroascorbic acid in medium induced embryogenic cells from non-embryogenic cells accompanying the inhibition of cell proliferation. Ascorbic acid in medium inhibited somatic embryogenesis from embryogenic cells while dehydroascorbic acid in medium enhanced somatic embryogenesis from the cells as well as non-embryogenic cells. This enhancement was limited to globular embryos and the maturation to cotyledonary embryos was inhibited by dehydroascorbic acid treatment. From the above results it is suggested that carrot callus cultures on medium containing dehydroascorbic acid could quickly induce embryogenic cells. In addition after brief culture of embryogenic cells on development medium containing dehydroascorbic there by acid the subculture of the cells to MS basal medium resulted in the high frequency production of somatic embryos.

  • PDF

Studies on the Induction of Transformation and Multiplication in Orchid Plants I. Formation of Somatic Embryos and Regeneration from Immature Seeds of Bletilla striata (난과식물의 형질전환 유도 및 다량증식에 관한 연구 I. 자란 (Bletilla striata)의 미성숙 종자로부터 체세포배 형성 및 식물체 재분화)

  • 이정석
    • Journal of Plant Biology
    • /
    • v.33 no.4
    • /
    • pp.271-276
    • /
    • 1990
  • Our study was carried out for plant regeneration via somatic embryogenesis from immature seeds of Bletilla striata. The highest frequency of embryogenic callus formation was obtained from the immature seeds (at 150 days after pollination) cultured on Hyponex and VW medium supplemented with 3 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D) and 1 mg/l kinetin under the dark condition. Multiple somatic embryos were induced when embryogenic callus was transferred to VW medium without growth regulators under continued illumination. Somatic embryos were observed histologically with scanning electron microscopy. Regeneration of Bletilla striata was obtained from somatic embryos with a well-defined scutellum and coleoptile as well as with one or more shoot primordia and root primordia. We think that these methods for orchid multiplication must be useful to access clonal propagation of orchids.

  • PDF