• Title/Summary/Keyword: somatic cell

Search Result 771, Processing Time 0.035 seconds

Estimation of Variance Component and Environment Effects on Somatic Cell Scores by Parity in Dairy Cattle (젖소집단의 산차에 따른 체세포점수의 환경효과 및 분산성분 추정)

  • 조광현;나승환;서강석;김시동;박병호;이영창;박종대;손삼규;최재관
    • Journal of Animal Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.39-48
    • /
    • 2006
  • This study utilized test day of somatic cell score data of dairy cattle from 2000 to 2004. The number of data used were 124,635 of first parity, 134,308 of second parity, 77,862 of third parity, 41,787 of forth parity and 37,412 of fifth parity. The data was analyzed by least square mean method using GLM to estimate the effects of calving year, age, lactation stage, parity and season on somatic cell score. Variance component estimation using test day model was determined by using expectation maximization algorithm- restricted maximum likelihood (EM-REML) analysis method. In each parity, somatic cell score was low for younger group and was relatively high in older groups. Likewise, for lactation stage, the score was low in early-lactation and high in late-lactation in first parity and second parity. Nevertheless, for the third, fourth and fifth parity, however, high somatic cell score was observed in mid-lactation. Generally, the score was high in the peak. Although in fourth and fifth parity, the score was low in late-lactation. Environmental effect of season, somatic cell score was generally low from September to November for all parities. The score was high between June and August when the milk production is usually low. The heritability in each parity were 0.05, 0.09, 0.10, 0.05 and 0.05 for parity 1, 2, 3, 4, 5, respectively. Genetic variance value was estimated to be high in second, third and fifth parity in early-lactation and to be low in first and forth parity.

Effects of Somatic Cell Conditioned Medium on the Chymotrypsin Resistance of Mouse Oocytes (체세포배양액이 생쥐 난자의 Chymotrypsin에 대한 내성에 미치는 영향)

  • Kim, Sung-Rye;Chung, Hye-Won;Kim, Seong-Im;Kim, Hae-Kwon
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.25 no.2
    • /
    • pp.207-216
    • /
    • 1998
  • Certain types of somatic cells, as well as follicular cumulus cells associating with mammalian oocytes, are known to produce beneficial effects on in vitro fertilization and pre implantation development of mammalian eggs when they are present in oocyte culture medium. To investigate the nature of the effects of somatic cells, the resistance of mouse oocytes against chymotrypsin treatment was examined after culture within various cell conditioned media. When mouse oocytes matured for 17-18 hr in the presence of cumulus cells were treated with 1 % chymotrypsin, half of them remained still alive even after 240 min $(t_{50}>240.0)$. In contrast half of mouse oocytes cultured without cumulus cells underwent degeneration within 65.0 min $(t_{50}=65.0{\pm}13.2min)$ of the same treatment. To see if the effects were duc to the secretory products of cumulus cells, mouse cumulus cells were cultured for 20 hr in medium containing 0.4% BSA and the supernatant of culture medium (conditioned medium) was taken. After maturation in the cumulus cell conditioned medium, mouse oocytes exhibited $t_{50}=190.0{\pm}10.8$ min upon chymotrypsin treatment whereas half of oocytes cultured without conditioned medium degenerated within 25.5 min. Human granulosa cell conditioned medium gave similar effects such that oocytes matured in conditioned medium exhibited $t_{50}=183.3{\pm}19.1$ min while $t_50$ of control group oocytes was $60.0{\pm}6.8$ min, Oocytes matured in vero cell conditioned medium exhibited $t_{50}=196.7{\pm}8.8$ min. On the other hand, amniotic cell conditioned medium resulted in the chymotrypsin resistance of $t_{50}=80.0{\pm}8.4$ min which was not statistically different from the control value of $t_{50}=48.0{\pm}13.2$ min. Based upon these results, it is suggested that certain somatic cell types including cumulus cells might change the biochemical properties of mouse oocyte membrane during meiotic maturation as revealed by the enhanced resistance against chymotrypsin treatment. Such effects of somatic cells appear to be mediated via the secretory products rather than direct communication between somatic cells and oocytes.

  • PDF

Somatic Cell Counts in Milk of Buffaloes Administered Oxytocin During Early Lactation

  • Prasad, Jyotsna;Singh, Mahendra
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.5
    • /
    • pp.684-692
    • /
    • 2001
  • To find out the effect of oxytocin on somatic cell count and milk production, 12 primiparous and multiparous Murrah buffaloes were selected, immediately after the parturition, from the Institute's buffalo herd. These were divided into two groups of 6 each. Buffaloes of group I did not receive oxytocin injection (control); whereas, buffaloes of group II were administered oxytocin during early lactation (av. 42.50 days). The oxytocin injection was given in doses of 2.5 IU i.m. before the start of milking, to let down the milk, for a period of 5 days. Samples of milk from individual buffaloes were collected for 5 days before (Period I), during (Period II) and after (Period III) from both the group of buffaloes. Milk samples of A. M. and P. M. milking were composited in proposition to milk yields for analysis of milk constituents. Normal values of somatic cell counts in group I of buffaloes varied from 0.54 to $0.75{\times}10^{5}cells/ml$. Mean cytoplasmic particles and epithelial cells varied from 3.68 to $7.19{\times}10^{5}cells/ml$ and 0.13 to $0.54{\times}10^{5}cells/ml$. On percentage basis the epithelial and the total leucocyte count were 60 and 40. Total leucocyte count, in the study varied from 0.17 to $0.69{\times}10^{5}cells/ml$. The differential cell count of milk indicated presence of lymphocytes (16.50 to $61.16{\times}1000$), neutrophil (0.00 to $2.00{\times}1000$) and monocyte (0.00 to $18.16{\times}1000$). Somatic cell count (p<0.01) and epithelial cells (p<0.05) varied between buffaloes and between periods of study. Total leucocyte counts of milk were also significantly varied between periods (p<0.05). The change in fat, lactose, chloride, EC and NEFA concentrations during different periods of study, were highly significant, indicated diurnal variations in different buffaloes during different days of experiment. Administration of oxytocin resulted in increase in somatic cell counts of milk (p<0.01) due to the increases in total leucocyte count (p<0.01) during the treatment period. The differential cell count indicated that oxytocin administration increased lymphocyte number significantly (p<0.01). However, secretion of neutrophil, monocyte and cytoplasmic particles were not affected by oxytocin. Eosinophil and basophil cell, though present in few samples, remain unaffected by oxytocin administration. There was no effect of oxytocin on milk production, composition, pH, EC and NEFA concentration.

Characteristics of Goat Milk - Milk Fat, Somatic Cell Count, and Goaty Flavor - (산양유의 특성 - 유지방, 체세포, 그리고 산양취 -)

  • Jeong, Seok-Geun;Lee, Seung-Gyu;Kim, Dong-Hun;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.21-26
    • /
    • 2008
  • Since goat milk infant formula has been increased, it is expected that goat milk consumption would be increased. This review summarizes the characteristics of goat milk especially, milk fat, somatic cell count, and goaty flavor. Average milk fat content for one year of twelve goat milk farms was 3.6%, but $2.9{\sim}3.1%$ in summer, which means summer goat milk could not meet the 'Processing and Ingredient Standard for Animal Products'. More than 3.2% for goat milk fat content in 'Processing and Ingredient Standard for Animal Products' should be amended. In addition to, hygienic standard for goat milk should be newly established because goat milk has naturally higher somatic cell count with noninfectious factors. It is thought that 6-trans nonenal and some branched fatty acids are responsible for the goaty flavor. It is necessary to minimize goaty flavor from farm to table because goaty flavor is the most important factor for the promotion of goat milk industry.

  • PDF

Comparison of Developmental Efficiency of Murine Somatic Cell Nuclear Transfer Protocol

  • Moon, Jeonghyeon;Jung, Miran;Roh, Sangho
    • Journal of Embryo Transfer
    • /
    • v.32 no.3
    • /
    • pp.81-86
    • /
    • 2017
  • The Somatic cell nuclear transfer (SCNT) method can be applied to various fields such as species conservation, regenerative medicine, farming industries and drug production. However, the efficiency using SCNT is very low for many reasons. One of the troubles of SCNT is that it is highly dependent on the researcher's competence. For that reason, four somatic cell nuclear injection methods were compared to evaluate the effect of hole-sealing process and existence of cytochalasin B (CB) on efficiency of murine SCNT protocol. As a results, the microinjection with the hole-sealing process, the oocyte plasma membrane is inhaled with injection pipette, in HCZB with CB was presented to be the most efficient for the reconstructed in SCNT process. In addition, we demonstrated that the oocytes manipulated in Hepes-CZB medium (HCZB) with CB does not affect the developmental rate and the morphology of the blastocyst during the pre-implantation stage. For this reason, we suggest the microinjection involving hole-sealing in HCZB with CB could improve SCNT process efficiency.

Production of Artificial Seeds by Alginate-encapsulation of Rice Somatic Embryos (벼의 수화겔 인공종자 생산)

  • 정원중;민성란;송남희;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.3
    • /
    • pp.183-186
    • /
    • 1994
  • Somatic embryos derived from cell suspension cultures of rice were singly alginate-encapsulated to be used as artificial seeds. When placed on half strength MS solid medium,73% of the encapsulated somatic embryos were capable of germination Encapsulation per se did not affect the germination frequency of embryos. When incubated by wrapping with moistured non-sterile filter paper, 60% of the encapsulated somatic embryos germinated. However encapsulated zygotic embryos without endosperm showed a high germination frequency regardless of the sterility of the incubation conditions. The results suggest that a greater susceptibility of somatic embryos to contaminants is attributed to lower germination frequency of encapsulated somatic embryos in non-sterile conditions.

  • PDF

Effect of Bromelain and Zn-Methionine on Milk Yield and Somatic Cell Counts of Dairy Cows (Bromelain과 Zn-Methionine 혼합 급여가 젖소의 산유량 및 체세포수에 미치는 영향)

  • Jeong, Yu-Jin;Kim, Yong-Kook
    • Korean Journal of Agricultural Science
    • /
    • v.34 no.2
    • /
    • pp.135-142
    • /
    • 2007
  • Holstein cows(n=8) were assigned to control diet(n=4) and treatment diet(n=4) containing products of Bromelain(50g/kg) and Zn-methionine (133g/kg). Basal diet was mixed as total mixed rations with 60% concentrate and 40% roughage(rice straw) and fed for 8 weeks. The milk production, somatic cell counts in milk were measured and determined. The results were summarized as follow. Average milk production was higher for cows fed treatment diet(30.2kg/d) than cows fed control diet(29.6kg/d) (P<0.05). The somatic cell counts was significantly lower for cows fed treatment diet ($179.8{\times}10^3/ml$) than cows fed control diet ($260.8{\times}10^3/ml$)(P<0.05). In conclusion, supplementation of both Bromelain and Zn-methionine increased milk production and reduced somatic cell counts in milk.

  • PDF

Establishment of an Efficient System for the Production of Transgenic Somatic Cell Nuclear Transfer Embryos

  • Cho, J.K.;Bhuiyan, M.M.U.;Jang, G.;Park, E.S.;Chang, K.H.;Park, H.J.;Lim, J.M.;Kang, S.K.;Lee, B.C.;Hwang, W.S.
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.75-75
    • /
    • 2002
  • The present study was conducted for the production of transgenic cloned cows by somatic cell nuclear transfer (SCNT) that secrete human prourokinase into milk. To establish an efficient production system for bovine transgenic SCNT embryos, the offset was examined of various conditions of donor cells including cell type, size, and passage number on the developmental competence of transgenic SCNT embryos. An expression plasmid far human prourokinase (pbeta-ProU) was constructed by inserting a bovine beta-casein promoter, a green fluorescent protein (GFP) marker gene, and a human prourokinase target gene into a pcDNA3 plasmid. Three types of bovine somatic cells including two adult cells (cumulus cells and ear fibroblasts) and fetal fibroblasts were prepared and transfected using a lipid-meidated method. In Experiment 1, developmental competence and rates of GFP expression in bovine transgenic SCNT embryos reconstructed with cumulus cells were significantly higher than those from fetal and ear fibroblasts. In Experiment 2, the effect of cellular senescence in early (2 to 4) and late (8 to 12) passages was investigated. No significant differences in the development of transgenic SCNT embryos were observed. In Experient 3, different sizes of GFP-expressing transfected cumulus cells [large (>30 ${\mu}{\textrm}{m}$) or small cell (<30 ${\mu}{\textrm}{m}$)] were used for SCNT. A significant improvement in embryo development and GFP expression was observed when small cumulus cells were used for SCNT. Taken together, these results demonstrate that (1) adult somatic cells could serve as donor cells in transgenic SCNT embryo production and cumulus cells with small size at early passage were the optimal cell type, and (2) transgenic SCNT embryos derived from adult somatic cells have embryonic development potential.

  • PDF

High Frequency Plant Regeneration in Embryogenic Cell Suspension Cultures of Cucumber (오이 배발생세포의 현탁배양을 통한 고빈도 식물체 재분화)

  • 정원중;우제욱;박효근;최관삼;유장렬
    • Korean Journal of Plant Tissue Culture
    • /
    • v.26 no.4
    • /
    • pp.289-291
    • /
    • 1999
  • Hypocotyl explants from 7 days old seedlings of one $F_1$ hybrid cultivar and two pure lines of cucumber formed embryogenic calli at frequencies of up to 8% when cultured on Murashige and Skoog medium (MS) supplemented with 1 mg/L 2,4-D for 3 weeks. Embryogenic calli gave rise to somatic embryos. When slices of somatic embryos were cultured on the same medium for 4 weeks, they formed embryogenic calli. Embryogenic cell suspension cultures were established with embryogenic calli in MS liquid medium with 1 mg/L 2,4-D. Embryogenic potential of cell suspension cultures was maintained by subculturing every seven days. When the level of 2,4-D in the medium was lowered to 0.2 mg/L by diluting with liquid MS basal medium, embryogenic cell suspension cultures underwent development into numerous somatic embryos. When plated onto MS basal medium, over 95% of somatic embryos developed into plantlets. Plantlets were transplanted to potting soil and grown to maturity.

  • PDF

Changes of testosterone production in adult mouse testis and serum after wholebody irradiation

  • Chun, Ki-Jung;Kim, Jihyang;Kim, Woo-Jung;Kim, Jin-Kyu;Kim, Bonghee;Yoon, Yong-Dal
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.05a
    • /
    • pp.178-179
    • /
    • 2003
  • The testis is composed of four cell types like supporting cells, steroid-producing cells, connective tissue cells and germ cells. Apoptosis is a common phenomenon during spormatogenesis. Apoptosis of germ cells can also be induced by exposure to radiation. Previous studies have shown that most types of germ cells are rather radiosensitive while somatic cells in testis are much more radio-resistant. The somatic cells in testis are divided to mainly Sertoli and Leydig cells. Though somatic cells are more radio-resistant than germ cells, radiation can induce the impairment of their function. This damaged function of somatic cells may accelerates degeneration of germ cell indirectly. Tn the present study, we have examined the apoptotic effect of mouse testis and irradiation effect of steroidogenesis of Leydig cells after irradiation.

  • PDF