• 제목/요약/키워드: solvent-nonsolvent

검색결과 33건 처리시간 0.03초

혼합용매에 의한 Polycarbonate의 결정화 (Solvent Induced Crystallization of Polycarbonate in Mixed Solvent)

  • 황덕근;이창엽;설용건
    • 폴리머
    • /
    • 제25권6호
    • /
    • pp.811-817
    • /
    • 2001
  • 용매와 비용매의 다양한 비율에 따라서 bisphenol A polycarbonate(PC)의 무정형에서 결정성의 상변화를 확인하였다. 용매로 chloroform을, 비용매로 isopropanol을 사용하였다. 결정화된 PC는 광학현미경과 SEM, XRD, DSC를 이용하여 조사하였고, DSC와 XRD의 측정값은 PC의 결정화도를 판단하는데 이용하였다. 용해도 상수는 PC의 결정화도를 조절하는데 중요한 인자로 PC 결정화도 차이는 혼합용매의 용해도 상수 차이로 설명하였다. 용매와 비용매 비율이 75/25 wt%의 PC 용액에서 고결정화도를 가진 PC powder로 얻을 수 있었다. 이런 결과는 혼합용매의 용해도 상수(9.85)가 PC의 용해도 상수(9.9)와 유사하였기 때문이라고 판단된다.

  • PDF

사성분계 시스템의 액액상분리에 관한 연구 (폴리술폰/폴리에테르술폰/NMP/물) (Liquid-Liquid Phase Separation in a Quaternary System of PolysuIfone/Polyethersulfone/N-Methyl-2-pyrrolidone/water)

  • 백기전;김제영;이환광;김성철
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1998년도 춘계 총회 및 학술발표회
    • /
    • pp.22-24
    • /
    • 1998
  • 1. INTRODUCTION : The phase inversion method is widely used to prepare a variety of polymeric membranes ranging from micro-filtration to gas separation. The final morphology obtained by immersion precipitation strongly reflects the thermodynamics and kinetics of the system involved. The equilibrium thermodynamics of the ternary system of polymer/solvent/ nonsolvent is still very important to understand and predict membrane structure. Polysulfone (PSf) and polyethersulfone (PES) are important polymers as membrane materials due to the chemical resistance, mechanical strength, thermal stability and transport properies. There are several reports on the experimental phase diagrams in ternary mixtures of PSf/solvent/nonsolvent, and PES/solvent/nonsolvent. It would be interesting to investigate the solution thermodynamics containing these two polymers since PES is slightly less hyclrophobic than PSf.

  • PDF

Preparation and characterization of polyethersulfone microfiltration membrane by 2-methoxy ethanol nonsolvent additive

  • Shin, Se-Jong;Kim, Hyung-Sik;Min, Byoung-Ryul
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2004년도 Proceedings of the second conference of aseanian membrane society
    • /
    • pp.166-169
    • /
    • 2004
  • Microfiltration membranes were prepared from aromatic polyethersulfone (PES) polymer, using aprotic solvent (N-methyl-2-pyrrolidone, NMP) and non-solvent additive (2-methoxy ethanol, 2-ME) by the phase inversion co-process of the vapor-induced phase inversion (VIPI) and the nonsolvent-induced phase inversion (NIPI). According to the change of the additive amount, the solvent amount and the relative humidity, membrane characterization was studied. The non-solvent additive in casting solution played an important role in membrane morphology. During the vapor-induced phase inversion, the relative humidity led to water sorption on the surface of casting dope at which pore formation was generated. The prepared membranes were characterized by scanning electron microscope observations, measurements of capillary flow porometer and pure water flux (PWP). Also the thermodynamic and kinetic properties of membrane-forming system were studied through coagulation value, light transmittance and viscosity.

  • PDF

Cr (VI) separation by PolyHIPE membrane immobilized with Aliquat 336 by solvent-nonsolvent method

  • Chen, Jyh-Herng;Mai, Le Thi Tuyet;Hsu, Kai-Chung
    • Membrane and Water Treatment
    • /
    • 제8권6호
    • /
    • pp.575-590
    • /
    • 2017
  • PolyHIPEs membrane prepared with styrene (St), divinylbenzene (DVB), and ethylhexyl acrylate (EHA) can yield a unique pore structure provided by large voids highly interconnected by many small window throats. With the advantageous pore structure, PolyHIPE presents a potential as a support for carrier facilitated transport membrane. Tricaprylmethylammonium chloride (Aliquat 336) can be efficiently incorporated into the PolyHIPE membrane by a two-step solvent-nonsolvent method to obtain an Aliquat 336-immobilized PolyHIPE membrane with good stability. The study of Cr (VI) transport through Aliquat 336-immobilized PolyHIPE membrane indicates that the membrane has high initial flux and maxima stripping flux ($J_f^o=15.01({\mu}mol/m^2s)$, $J_s^{max}=6.15({\mu}mol/m^2s)$). The reusability study shows that the Aliquat 336-immobilized PolyHIPE membrane can maintain high Cr(VI) recovery efficiency even after 15 cycles of operations. The developed membrane was also used in the separation of Cr (VI) from other anions (i.e., $SO_4{^{2-}}$ and $NO_3{^-}$) and other cations (i.e., Ni (II), Mg (II) and Cu (II)) with good selectivity.

The effect of thermodynamic stability of casting solution on the membrane inversion process morphology and permeation properties in phase inversion process

  • Kim, Jeong-Hoon;Lee, Kew-Ho
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1995년도 춘계 총회 및 학술발표회
    • /
    • pp.26-27
    • /
    • 1995
  • Most of synthetic polymeric membranes used in ultrafiltration, reverse osmosis and microfiltration processes are prepared by phase inversion(or phase separation) technique. In this technique, a homogeneous polymer solution is cast into thin film or hollow fiber shape and then immersed into a nonsolvent coagulant bath. The exchange of solvent and nonsolvent across the interface between casting solution and coagu!ant can make the casting solution phase-separate and form a membrane with a symmetric or asymmetric structure. Because of importance of this technique in membrane field, many investigations have been dedicated to elucidate the mechanism of membrane formation by phase inversion technique.[1-10] These investigation have suggested that the structure formation and permeation properties of phase inversion membrane depend on the variables such as the nature and content of casting solution and coagulant, temperature of casting solution and coagulant, and the diffusional exchange rate of solvent and nonsolvent etc. which can be related to the thermodynamic and kinetic properties of the casting system. The variables such as the nature and content of casting solution can also be the important factor affecting the structure formation and permeation property of the phase inversion membrane.

  • PDF

상분리 조절에 의한 PVDF막의 구조 변화 (Structural Changes of PVDF Membranes by Phase Separation Control)

  • 이세민;김성수
    • Korean Chemical Engineering Research
    • /
    • 제54권1호
    • /
    • pp.57-63
    • /
    • 2016
  • Polyvinylidene fluoride (PVDF) 평막 제조를 위하여 PVDF의 용매와 희석제로서 n-methyl-2-pyrrolidone (NMP)와 dibutyl-phthlate (DBP)를 각각 사용하여 열유도 상분리(thermally induced phase separation, TIPS)와 비용매유도 상분리(nonsolvent induced phase separation, NIPS)를 동시에 유도하였다. NMP와 DBP를 PVDF와 용융 혼합할 경우 TIPS 공정에서의 결정화 온도가 낮아졌고 NIPS 공정에서의 불안정 영역이 확대되었다. 용매와 희석제의 비율에 따라 상분리 메카니즘이 변화하였고 이에 따라 다양한 구조의 막이 형성됨을 확인하였다. 또한 dope 용액과 비용매의 접촉여부에 따라 지배적인 상분리 거동이 결정되었다. 열전달이 물질전달에 비하여 빠르게 이루어지므로 막의 표면은 NIPS에 의하여 지배를 받고 막의 내부는 TIPS에 의한 구조가 형성되었다. 또한 dope 용액의 급냉온도에 따라 상분리 메카니즘 및 상분리 속도가 변화하여 다양한 구조를 형성하였다.

Morphology of Membranes Formed from Polysulfone/Polyethersulfone/N-methyl-2-pyrrolidone/Water System by Immersion Precipitation

  • Baik, Ki-Jun;Kim, Je-Young;Lee, Jae-Sung;Kim, Sung-Chul;Lee, Hwan-Kwang
    • Macromolecular Research
    • /
    • 제9권5호
    • /
    • pp.285-291
    • /
    • 2001
  • The polysulfone(PSf)/polyethersulfone(PES) blend membranes were prepared by an immersion precipitation method. N-methyl-2-pyrrolidone(NMP) was used as a solvent and water as a nonsolvent. The composition of the coagulation bath and the dope polymer concentration as well as the blend ratio of two polymers were varied. The membrane morphologies were interpreted on the basis of the phase diagram of the PSf/PES/NMP/water system. As the solvent content in the coagulation bath increased in the single polymer system, the number of macrovoids decreased and the morphology was changed from finger-like to cellular structure. In the given bath condition phase separation occurs earlier for the solutions of PSf/PES blend than for those of single polymer. A horizontally layered structure and horizontal protuberances inside the macrovoid were observed for the membranes formed from PSf/PES blend solutions. This peculiar structure formation can be interpreted by a PSf-rich/PES-rich phase separation followed by a polymer-rich/polymer-lean phase separation during the exchange of solvent and nonsolvent.

  • PDF

비용매 첨가제를 이용한 비대칭막의 제조 (Preparation of Asymmetric Membranes by Addition of Nonsolvent)

  • 김노원
    • 멤브레인
    • /
    • 제25권1호
    • /
    • pp.32-41
    • /
    • 2015
  • 용매 비용매 치환 상전이 공정과 증기 유도 상전이 공정을 결합하여 성능이 향상된 폴리술폰 정밀역과막을 제조하였다. 본 연구에서 제조된 비대칭막은 폴리술폰(고분자), 디메틸 포름아미드(용매), 폴리비닐리돈(친수성 고분자 첨가제), 폴리에틸렌글리콜(극성 고분자 액상 첨가제)로 이루어진 혼합 용액에 디메틸술폭사이드(극성 아프로틱 비용매), 물(극성 프로틱 비용매 첨가제)을 첨가하여 제막용 캐스팅 용액을 물과 이소프로판올 혼합용액에 침지하여 얻었다. 극성 아프로틱 비용매와 극성 프로틱 비용매의 첨가는 멤브레인의 구조를 제어하는데 유용한 방법이며 이를 습윤 공기를 캐스팅 용액에 노출시켜 준 응고상태를 만들어줌으로써 멤브레인의 내부 구조를 제어하고자 하였다. 또한 응고조의 조성을 물/이소프로판올의 혼합비를 통하여 조절하였다. 순수 투과도, 기공 크기 분포도, 표면 친수도 및 구조 분석이 이루어졌으며, 그 결과 평균 기공의 크기를 거의 $0.2{\mu}m$ 정도 향상시키는 효과를 가져왔으며 수 투과 유량 또한 1000-1800 LMH 정도 향상시키는 결과를 나타내었다.

Investigation of Demixing Phenomena of a Polymer Solution During the Phase Inversion Process

  • Han, Myeong-Jin;D. Bhattacharyya
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1995년도 춘계 총회 및 학술발표회
    • /
    • pp.11-15
    • /
    • 1995
  • Polysulfone (PS) membranes were prepared by the phase inversion process using water or isopropanol as nonsolvent. The Flory-Huggins theory for a ternary system nonsolvent/solvent/polymer is applied to describe the thermodynamic equilibria of the components. The calculated ternary phase equilibria show that demixing of a PS binary solution with n-methylpyrrolidone (NMP) will be fast in a water coagulation bath and will be delayed in an isopropanol bath. The prepared membranes were characterized by SEM, gas adsorption-desorption measurement, and permeability test. The membrane, which is precipitated by fast demixing in a water bath, has nodular structures in the skin region and includes finger-like cavities in the sublayer. The membrane coagulated by isopropanol has a very dense and thick skin structure, which is formed by delayed demixing. The membrane coagulated by isopropanol showed considerably lower pore volume and surface area compared to that observed with water coagulation method. With dimethylformamide (DMF) as solvent and 2-3 wt% of water, the solution can show the liquid-liquid phase separation due to agglomation of the polymer-lean phase from the homogeneous solution. The membranes, which were coagulated near an equilibrium state, show the large (micron size) round pores in the whole membranes. The pores do not contribute the permeation characteristics.

  • PDF