DOI QR코드

DOI QR Code

Cr (VI) separation by PolyHIPE membrane immobilized with Aliquat 336 by solvent-nonsolvent method

  • Chen, Jyh-Herng (Department of Materials and Mineral Resources Engineering, National Taipei University of Technology) ;
  • Mai, Le Thi Tuyet (College of Engineering, National Taipei University of Technology) ;
  • Hsu, Kai-Chung (College of Engineering, National Taipei University of Technology)
  • Received : 2017.06.03
  • Accepted : 2017.07.23
  • Published : 2017.11.25

Abstract

PolyHIPEs membrane prepared with styrene (St), divinylbenzene (DVB), and ethylhexyl acrylate (EHA) can yield a unique pore structure provided by large voids highly interconnected by many small window throats. With the advantageous pore structure, PolyHIPE presents a potential as a support for carrier facilitated transport membrane. Tricaprylmethylammonium chloride (Aliquat 336) can be efficiently incorporated into the PolyHIPE membrane by a two-step solvent-nonsolvent method to obtain an Aliquat 336-immobilized PolyHIPE membrane with good stability. The study of Cr (VI) transport through Aliquat 336-immobilized PolyHIPE membrane indicates that the membrane has high initial flux and maxima stripping flux ($J_f^o=15.01({\mu}mol/m^2s)$, $J_s^{max}=6.15({\mu}mol/m^2s)$). The reusability study shows that the Aliquat 336-immobilized PolyHIPE membrane can maintain high Cr(VI) recovery efficiency even after 15 cycles of operations. The developed membrane was also used in the separation of Cr (VI) from other anions (i.e., $SO_4{^{2-}}$ and $NO_3{^-}$) and other cations (i.e., Ni (II), Mg (II) and Cu (II)) with good selectivity.

Keywords

References

  1. Alguacil, F.J., Caravaca, C. and Martin, M.I. (2003), "Transport of chromium (VI) through a Cyanex 921- supported liquid membrane from HCl solutions", J. Chem. Technol. Biotechnol., 78(10) 1048-1053. https://doi.org/10.1002/jctb.903
  2. Alonso, A.I., Pantelides, C.C. (1996), "Modeling and simulation of integrated membrane process for recovery of Cr (VI) with Aliquat 336", J. Membr. Sci., 110(2), 151-167. https://doi.org/10.1016/0376-7388(95)00228-6
  3. Arslana, G., Tor, A., Muslua, H., Ozmena, M., Akina, I., Cengeloglua, Y. and Ersoz, M. (2009), "Facilitated transport of Cr (VI) through a novel activated composite membrane containing Cyanex 923 as a carrier", J. Membr. Sci., 337(1-2), 224-231. https://doi.org/10.1016/j.memsci.2009.03.049
  4. Asai, S., Watanabe, K., Saito, K. and Sugo, T. (2006), "Preparation of Aliquat 336-impregnated porous membrane", J. Membr. Sci., 281(7-9), 195-202. https://doi.org/10.1016/j.memsci.2006.03.033
  5. Cameron, N.R. (2005), "High internal phase emulsion templating as a route to well-defined porous polymers", Polymer, 46(5) 1439-1449.
  6. Chen, J.H. and Huang, C.E. (2007), "Selective separation of Cu and Zn in the citric acid leachate of industrial printed wiring board sludge by D2EHPA-modified Amberlite XAD-4 resin", Ind. Eng. Chem. Res., 46(22), 7231-7238. https://doi.org/10.1021/ie0616242
  7. Chen, J.H., Hsu, K.C. and Chang, Y.M. (2013), "Surface modification of hydrophobic resin with tricaprylmethylammonium chloride for the removal of trace hexavalent chromium", Ind. Eng. Chem. Res., 52(33), 11685-11694. https://doi.org/10.1021/ie401233r
  8. Christian, R. (2003), Solvents and Solvent Effects in Organic Chemistry, 3rd Edition, Wiley-VCH Publishers.
  9. Cussler, E.L. (1997), Diffusion: Mass Transfer in Fluid Systems New York, 2nd Edition, Cambridge University Press.
  10. Danesi, P.R. and Reichley-Yinger, L. (1986), "A composite supported liquid membrane for ultraclean Co, Ni separations", J. Membr. Sci., 27(3) 339-347. https://doi.org/10.1016/0376-7388(86)80004-7
  11. Derrick, M.R., Stulik, D. and Landry, J.M. (1999), Infrared Spectroscopy in Conservation Science: Scientific Tools for Conservation, Los Angeles, CA: Getty Conservation Institute, Los Angeles, CA.
  12. Dinkar, A.K., Singh, S.K., Tripathi, S.C., Gandhi, P.M., Verma, R. and Reddy, A.V.R. (2013). ), "Carrier facilitated transport of thorium from HCl medium using Cyanex 923 in n-dodecane containing supported liquid membrane", J. Radioanal. Nucl. Chem., 298, 707-715. https://doi.org/10.1007/s10967-013-2576-x
  13. Ferraz, H.C., Duarte, L.T., Alves, M. Di Luccio, T.L.M., Habert, A.C. and Borges, C.P. (2007), "Recent achievements in facilitated transport membranes for separation processes", Braz. J. Chem. Eng., 24(1) 101-118. https://doi.org/10.1590/S0104-66322007000100010
  14. Gherasim, C.V., Bourceanu, G., Olariu, R.I. and Arsene, C. (2011), "A novel polymer inclusion membrane applied in Chromium (VI) separation from aqueous solutions", J. Hazard. Mater., 97, 244-253.
  15. Haidekker, M.A., Brady, T.P., Lichlyter, D. and Theodorakis, E.A. (2005), "Effects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes", Bioorg. Chem., 33(6), 415-425. https://doi.org/10.1016/j.bioorg.2005.07.005
  16. Jabera, A.M.Y., Alia, S.A. and Yahayab, G.O. (2005), "Studies on phenol permeation through supported liquid membranes containing functionalized polyorganosiloxanes", J. Membr. Sci., 250(1-2), 85-94. https://doi.org/10.1016/j.memsci.2004.10.019
  17. Kaya, A., Alpoguz, H.K. and Yilmaz, A. (2013), "Application of Cr(VI) Transport through the Polymer Inclusion Membrane with a New Synthesized Calix[4]arene Derivative", Ind. Eng. Chem. Res., 52(15), 5428-5436. https://doi.org/10.1021/ie303257w
  18. Kebiche-Senhadji, O., Tingryb, S., Setab, P. and Benamora, M. (2010), "Selective extraction of Cr(VI) over metallic species by polymer inclusion membrane (PIM) using anion (Aliquat 336) as carrier", Desalination, 258, 59-65. https://doi.org/10.1016/j.desal.2010.03.047
  19. Kemperman, A.J.B., Rolevink, H.H.M., van den Boomgaard, Th. and Strathmann, H. (1997), "Hollowfibersupported liquid membranes with improved stability for nitrate removal", Sep. Purif. Technol., 12, 119-134. https://doi.org/10.1016/S1383-5866(97)00043-9
  20. Kocherginsky, N.M., Yang, Q. and Seelama, L. (2007), "Recent advances in supported liquid membrane technology", Sep. Purif. Technol., 53(2), 171-177. https://doi.org/10.1016/j.seppur.2006.06.022
  21. Kozlowski, C.A. and Walkowiak, W. (2005), "Applicability of liquid membranes in chromium (VI) transport with amines as ion carriers", J. Membr. Sci., 266(1-2), 143-150. https://doi.org/10.1016/j.memsci.2005.04.053
  22. Marcel, M. (1991), Basic Principles of Membrane Technology, Kluer Academic Publishers, Dordrecht/Boston/London.
  23. Mehmet, K., Hamza, K.A., Ahmet, K., Nurcan, A., Ahmet, O.G. and Mustafa, A. (2011), "A kinetic study of mercury (II) transport through a membrane assisted by new transport reagent", Chem. Cent. J., 5, 43-49. https://doi.org/10.1186/1752-153X-5-43
  24. Neplenbroek, A.M., Bargeman, D. and Smolders C.A. (1992), "Supported liquid membranes: stabilization by gelation", J. Membr. Sci., 67(2-3), 149-165. https://doi.org/10.1016/0376-7388(92)80022-C
  25. Othman, N., Harruddin, N., Idris, A., Ooi, Z., Fatiha, N. and Sulaiman, R.N.R. (2016), "Fabrication of polypropylene membrane via thermally induced phase separation as a support matrix of tridodecylamine supported liquid membrane for Red 3BS dye removal", Desalination Desalinat. Water Treat., 57(26), 12287-12301. https://doi.org/10.1080/19443994.2015.1049554
  26. Richard, W.B. (2012), Membrane Technology and Applications, 3rd Edition, McGraw-Hill.
  27. Rodriguez de San Miguel, E., Vital, X. and Gyves, J. (2014), "Cr(VI) transport via a supported ionic liquid membrane containing CYPHOS IL101 as carrier: System analysis and optimization through experimental design strategies", J. Hazard. Mater., 273, 253-262. https://doi.org/10.1016/j.jhazmat.2014.03.052
  28. Saha, B., Gill, R.J., Bailey, D.G., Nabay, N. and Arda, M. (2004), "Sorption of Cr (VI) from aqueous solution by Amberlite XAD-7 resin impregnated with Aliquat 336", Radiat. Phys. Chem., 60, 223-244.
  29. Scindia, Y.M., Pandey, A.K. and Reddy, A.V.R. (2005), "Coupled-diffusion transport of Cr(VI) across anion-exchange membranes prepared by physical and chemical immobilization methods", J. Membr. Sci., 249(1-2), 143-152. https://doi.org/10.1016/j.memsci.2004.10.015
  30. Senhadjia, O.K., Tingryb, S., Setab, P. and Benamora, M. (2010), "Selective extraction of Cr(VI) over metallic species by polymer inclusion membrane (PIM) using anion (Aliquat 336) as carrier", Desalination, 258, 59-65. https://doi.org/10.1016/j.desal.2010.03.047
  31. Silverstein, M.S. (2014), "PolyHIPEs: Recent advances in emulsion-templated porous polymers", Prog. Polym. Sci., 39(1), 199-234. https://doi.org/10.1016/j.progpolymsci.2013.07.003
  32. Singare, P.U., Lokhande, R. and Madyal, R.S. (2011), "Thermal degradation studies of some strongly acidicacidic", O. J. Physi. Chem., 1, 45-54. https://doi.org/10.4236/ojpc.2011.12007
  33. Tang, Y., Bao, S., Zhang, Y. and Liang, L. (2017), "Effect of support properties on preparation process and adsorption performances of solvent impregnated resins", React. Funct. Polym., 113, 50-57. https://doi.org/10.1016/j.reactfunctpolym.2017.02.006
  34. Tanko, N.L. (2011), "Transport relationships in porous media as a model for oil reservoir rocks", Thesis Doctor of Philosophy (PhD), University of Bath.
  35. Vallero, D. (2014), Fundamentals of Air Pollution, 5th Edition, Elsevier Inc.
  36. Weckhuysen, B.M., Wachs, I.E. and Schoonheydt, R.A. (1996), "Surface chemistry and spectroscopy of chromium in inorganic oxides", Chem. Rev., 96(8), 3327-3349. https://doi.org/10.1021/cr940044o
  37. Xu, J., Paimin, R., Shen, W. and Wang, X. (2003), "An investigation of solubility of Aliquat 336 in different extracted solutions", Fiber Polym., 4(1), 27-31. https://doi.org/10.1007/BF02899326
  38. Zha, F.F., Fane, A.G. and Fell, C.J.D. (1995), "Instability mechanisms of supported liquid membranes in phenol transport processes", J. Membr. Sci., 107(1-2), 59-74. https://doi.org/10.1016/0376-7388(95)00104-K
  39. Zhang, W., Liu J., Ren, Z., Wang, S., Du, C. and Ma, J. (2009), "Kinetic study of chromium (VI) facilitated transport through a bulk liquid membrane using tri-n-butyl phosphate as carrier", Chem. Eng. J., 155(1), 83-89. https://doi.org/10.1016/j.cej.2009.06.039
  40. Zhao, C., Danish, E., Cameron, N.R. and Kataky, R. (2007), "Emulsion-templated porous materials (PolyHIPEs) for selective ion and molecular recognition and transport: applications in electrochemical sensing", J. Mater. Chem., 23(17), 2446-2454.

Cited by

  1. Mechanistic investigation of facilitated transport of gold(III) from HCl media using ionic liquid Cyphos IL102 as carrier across a supported liquid membrane vol.52, pp.3, 2017, https://doi.org/10.1007/s13404-019-00262-0
  2. Extraction of La(III) by a nonionic microemulsion containing D2EHPA in hollow fiber contactor vol.12, pp.2, 2021, https://doi.org/10.12989/mwt.2021.12.2.075