Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.1.32

Preparation of Asymmetric Membranes by Addition of Nonsolvent  

Kim, Nowon (Department of Environmental Engineering, Dong-Eui University)
Publication Information
Membrane Journal / v.25, no.1, 2015 , pp. 32-41 More about this Journal
Abstract
High performance polysulfone microfiltration membranes with a high were successfully prepared by vapor induced phase separation (VIPS) coupled with non-solvent induced phase separation (NIPS) process. Asymmetric Membranes were prepared with PSF/DMF/PVP/PEG/DMSO/water mixed solutions and water/IPA coagulant. PSF, DMF, PVP, PEG, DMSO, water was used as a membrane polymer, a solvent, a hydrophilic polymer additive, a polar protic liquid polymer, a polar aprotic nonsolvent, and a polar protic nonsolvent in the casting solution, respectively. The addition of polar aprotic nonsolvents, and polar protic nonsolvents is a convenient and effective method to control membrane structure. In order to control the morphology of polymeric membranes, the spontaneous emulsification induced by drawing water vapor into the exposed casting solution surface has been used. Control of the internal morphology of polymeric membranes by using mixed coagulation solution such as water and IPA is discussed in the present work. The pure water permeability, pore size distribution, surface hydrophilicity and membrane morphology were investigated. Due to the addition of DMSO to casting solution, the mean pore size increased almost $0.2{\mu}m$ and the water flux increased about 1000-1800 LMH.
Keywords
phase inversion; microfiltration; DMSO; polysulfone;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 H. Nelson, R. Singh, R. Toledo, and N. Singh, "The use of a submerged microfiltration system for regeneration and reuse of wastewater in a fresh-cut vegetable operation", Sep. Sci. Technol., 42, 2473 (2007).   DOI
2 R. van Reis and A. Zydney, "Bioprocess membrane technology", J. Membr. Sci., 297, 16 (2007).   DOI
3 M. Mulder, "Basic Principles of Membrane Technology", pp. 71-89, Kluwer Academic Publishers, London (1996).
4 G. Belfort, R. H. Davis, and A. L. Zydney, "The behaviour of suspensions and macromolecular solutions in crossflow microfiltration", J. Membr. Sci., 96, 1 (1994).   DOI
5 D. B. Mosqueda-Jimenez, R. M. Narbaitz, T. Matsuura, G. Chowdhury, G. Pleizier, and J. P. Santerre, "Influence of processing conditions on the properties of ultrafiltration membranes", J. Membr. Sci., 231, 209 (2004).   DOI
6 S.-J. Shin, J.-P. Kim, H.-J. Kim, J.-H. Jeon, and B.-R. Min, "Preparation and characterization of polyethersulfone microfiltration membranes by a 2-methoxyethanol additive", Desalination, 186, 1 (2005).   DOI
7 N. Kim, C.-S. Kim, and Y.-T. Lee, "Preparation and characterization of polyethersulfone membranes with p-toluenesulfonic acid and polyvinylpyrrolidone additives", Desalination, 233, 218 (2008).   DOI
8 B. G. Park, S.-H. Kong, and S. Y. Nam, "Phase Behavior and Morphological Studies of Polysulfone Membranes; The Effect of Alcohols Used as a Non-solvent Coagulant", Membr. J., 15, 272 (2005).
9 M. Han, "Effect of Nonsolvent Additive in Casting Solutions on Polysulfone Membrane Preparation", Membr. J., 6, 157 (1996).
10 J. M. Greenwood, J. S. Johnson, and M. J. Witham, "Preparation of polyethersulfone membranes", US Patent, 6,056,903, May 2 (2000).
11 W. J. Wrasidlo, "Dispersing casting of integral skinned highly asymmetric polymer membranes", US Patent, 4,774,039, Sep 9 (1988).
12 R. F. Zepf, "Ultraporous and microporous membranes and method of making membranes", US Patent, 5,171,445, Mar 26 (1992).
13 V. P. Khare, A. R. Greenberg, and W. B. Krantz, "Vapor-induced phase separation-effect of the humid air exposure step on membrane morphology. Part I. Insight from mathematical modeling", J. Membr. Sci., 258, 140 (2005).   DOI
14 J. F. Li, Z. L. Xu, and H. Yang, "Microporous polyethersulfone membranes prepared under the combined precipitation conditions with non-solvent additives", Polym. Adv. Technol., 19, 251 (2008).   DOI
15 B. Chakrabarty, A. K. Ghoshal, and M. K. Purkait, "Effect of molecular weight of PEG on membrane morphology and transport properties", J. Membr. Sci., 309, 209 (2008) .   DOI
16 Y. Liu, G. H. Koops, and H. Strathmann, "Characterization of morphology controlled polyethersulfone hollow fiber membrane by the addition of polyethylene glycol to the dope and bore liquid solution", J. Membr. Sci., 223, 187 (2003).   DOI
17 R. M. Boom, H. W. Reinders, H. H. W. Rolevink, Th. van den Boomgaard, and C. A. Smolders, "Equilibrium thermodynamics of a quaternary membrane-forming system with two polymers", I. Experiments, Macromolecules, 27, 2041 (1994).   DOI
18 R. M. Boom, I. M. Wienk, Th. Van den Boomgaard, and C. A. Smolders, "Microstructures in phase inversionmembranes. Part 2. The role of a polymeric additive", J. Membr. Sci., 73, 277 (1992).   DOI
19 J. H. Kim and K. H. Lee, "Effect of PEG additive on membrane formation by phase separation", J. Membr. Sci., 138, 153 (1998).   DOI
20 I. F. Wang, R. A. Morris, and R. F. Zepf, "Highly asymmetric, hydrophilic, microfiltration membranes having large pore diameters", US Patent, 7,125,493, Oct 24 (2006).
21 J. J. Qin, M. H. Oo, and Y. Li, "Development of high flux polyethersulfone hollow fiber ultrafiltration membranes from a low a critical solution temperature dope via hypochlorite treatment", J. Membr. Sci., 247, 137 (2005).   DOI
22 B. Jung and N. Kim, "Preparation and Characterization of Microfiltration Membranes for Water Treatment", Membr. J., 24, 50 (2014).   DOI
23 Allan F. M. Barton, "Handbook of Solubility Parameters and other cohesion parameters", pp. 153-157, CRC Press, Boca Raton, FL (1983).
24 S. Choi, S. Park, B. Seo, S. Nam, and M. Han, "Effect of Propionic Acid Additive on Preparation of Phase Inversion Polysulfone Membrane", 18, 317 (2008).
25 B. G. Park, S.-H. Kong, and S. Y. Nam, "Phase Behavior and Morphological Studies of Polysulfone Membranes; The Effect of Alcohols Used as a Nonsolvent Coagulant", Membr. J., 15, 272 (2005).